cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A165521 The number of 4321-avoiding separable permutations of length n.

Original entry on oeis.org

1, 1, 2, 6, 21, 73, 243, 785, 2504, 7968, 25389, 81033, 258873, 827263, 2643616, 8447300, 26990489, 86236655, 275531223, 880341121, 2812760102, 8987010878, 28714292671, 91744697633, 293132350135, 936583428475, 2992465580300
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Examples

			For n=6, there are 394 separable permutations; 243 of them avoid 4321.
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7))); // G. C. Greubel, Oct 21 2018
  • Mathematica
    CoefficientList[Series[(1 - x)^3*(1 -3*x +2*x^2 -x^3)/(1 -7*x +19*x^2 - 28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7), {x, 0, 50}], x] (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7)) \\ G. C. Greubel, Oct 21 2018
    

Formula

G.f.: (1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7).
The growth rate (limit of the n-th root of a(n)) is approximately 3.19508.

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 09 2015

A165523 The number of 654321-avoiding separable permutations of length n.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 393, 1769, 7957, 35133, 151675, 642695, 2689411, 11176469, 46313531, 191837707, 795251170, 3300506324, 13712825121, 57019988099, 237221971144, 987206194720, 4108816936769, 17101813661923, 71181293634767
Offset: 0

Views

Author

Vincent Vatter, Sep 25 2009

Keywords

Examples

			For n=6, there are 394 separable permutations; all but one of them (654321 itself) avoid 654321, so a(6)=393.
		

Crossrefs

Formula

G.f.: ((x^7 - 4*x^6 + 12*x^5 - 23*x^4 + 28*x^3 - 19*x^2 + 7*x - 1)*(x^18 - 10*x^17 + 61*x^16 - 273*x^15 + 957*x^14 - 2697*x^13 + 6189*x^12 - 11622*x^11 + 17876*x^10 - 22474*x^9 + 22992*x^8 - 18999*x^7 + 12536*x^6 - 6488*x^5 + 2564*x^4 - 743*x^3 + 148*x^2 - 18*x + 1)*(x^3 - 2*x^2 + 3*x - 1)^2*(x - 1)^5) / (1 + 63561*x^32 - 294604*x^31 - 378989*x^5 + 656*x^2 - 37*x - 224*x^35 - x^37 + 20*x^36 - 11762*x^33 + 1818*x^34 + 60594*x^4 + 2259800395*x^14 + 13432485*x^28 - 4243006*x^29 - 37986829*x^27 - 1480312985*x^13 + 1190714*x^30 + 3761486169*x^16 - 4128383734*x^17 + 4081387760*x^18 - 7789502*x^7 + 1894854*x^6 - 79043750*x^9 - 7434*x^3 + 200616320*x^10 - 3079970285*x^15 - 3640807867*x^19 + 2934146785*x^20 + 861927311*x^12 - 443695596*x^11 + 26875022*x^8 + 452088473*x^24 + 96347460*x^26 - 839470131*x^23 - 219815232*x^25 - 2137896384*x^21 + 1408787953*x^22). The growth rate (limit of the n-th root of a(n)) is approximately 4.16229.

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 09 2015
Showing 1-2 of 2 results.