A165522 The number of 54321-avoiding separable permutations of length n.
1, 1, 2, 6, 22, 89, 368, 1488, 5831, 22311, 84223, 316181, 1185884, 4452567, 16742230, 63025805, 237423928, 894681874, 3371727204, 12706639594, 47884046357, 180440982667, 679939553548, 2562134671440, 9654584875285, 36380338185856, 137088669193146
Offset: 0
Examples
For n=6, there are 394 separable permutations; 368 of them avoid 54321.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- V. Vatter, Finding regular insertion encodings for permutation classes, Journal of Symbolic Computation, Volume 47, Issue 3, March 2012, Pages 259-265.
- Index entries for linear recurrences with constant coefficients, signature (18, -148, 743, -2564, 6488, -12536, 18999, -22992, 22474, -17876, 11622, -6189, 2697, -957, 273, -61, 10, -1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3 + 23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16-273*x^15+957*x^14- 2697*x^13+6189*x^12 -11622*x^11+17876*x^10-22474*x^9+22992*x^8-18999*x^7 +12536*x^6-6488*x^5 +2564*x^4-743*x^3+148*x^2-18*x+1))); // G. C. Greubel, Oct 21 2018 -
Mathematica
CoefficientList[Series[(1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3 + 23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16-273*x^15+957*x^14- 2697*x^13+6189*x^12-11622*x^11+17876*x^10-22474*x^9+22992*x^8-18999*x^7 +12536*x^6-6488*x^5+2564*x^4-743*x^3+148*x^2-18*x+1), {x,0,50}], x] (* G. C. Greubel, Oct 21 2018 *)
-
PARI
x='x+O('x^50); Vec((1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2 -28*x^3+23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16 -273*x^15 +957*x^14 -2697*x^13+6189*x^12-11622*x^11+17876*x^10-22474*x^9 +22992*x^8 -18999*x^7+12536*x^6-6488*x^5+2564*x^4-743*x^3+148*x^2 -18*x+1)) \\ G. C. Greubel, Oct 21 2018
Formula
G.f.: (1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3+23*x^4 -12*x^5 +4*x^6-x^7) / (x^18 -10*x^17 +61*x^16 -273*x^15 +957*x^14 -2697*x^13 +6189*x^12 -11622*x^11 +17876*x^10 -22474*x^9 +22992*x^8 -18999*x^7 +12536*x^6 -6488*x^5 +2564*x^4 -743*x^3 +148*x^2 -18*x +1). [typo fixed by Colin Barker, Jul 05 2013]
The growth rate (limit of the n-th root of a(n)) is approximately 3.76823.