A165562 Numbers n for which n+n' is prime, n' being the arithmetic derivative of n.
2, 6, 10, 14, 15, 21, 26, 30, 33, 34, 35, 38, 42, 46, 51, 55, 57, 58, 65, 66, 74, 78, 85, 86, 93, 102, 110, 111, 118, 123, 141, 143, 145, 155, 158, 161, 166, 177, 178, 182, 185, 186, 194, 201, 203, 205, 206, 209, 210, 215, 221, 230, 246, 254, 258, 267, 278, 282, 290
Offset: 1
Examples
46 is in the list because: n=46 -> n'=25 -> n+n'=71 that is prime.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory); P:= proc(n) local a,i,p,pfs; for i from 1 to n do pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs); if isprime(a+i) then print(i); fi; od; end: P(1000); # alternative isA165562 := proc(n) isprime(A129283(n)) ; end proc: for n from 1 to 1000 do if isA165562(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Feb 04 2022
-
Mathematica
(*First run the program given in A003415*) A165562 = Select[ Range[ 1000 ], PrimeQ[ # + a[ # ] ] & ]
-
Python
from sympy import isprime, factorint A165562 = [n for n in range(1,10**5) if isprime(n+sum([int(n*e/p) for p,e in factorint(n).items()]))] # Chai Wah Wu, Aug 21 2014
Extensions
Terms verified by Alonso del Arte, Oct 30 2009
Comments