cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A165561 Primes that are the sum of an integer n and its arithmetic derivative.

Original entry on oeis.org

3, 11, 17, 23, 31, 41, 47, 53, 59, 61, 71, 79, 83, 89, 107, 113, 127, 131, 149, 151, 167, 179, 191, 193, 197, 227, 239, 251, 263, 269, 271, 293, 311, 313, 347, 359, 383, 401, 419, 431, 439, 443, 449, 457, 479, 491, 503, 521, 523, 587, 593, 599, 607, 617, 631
Offset: 1

Views

Author

Keywords

Comments

Some primes are the sum of an integer and its derivative in more than one way (e.g., 23, 71, 191 (not a complete listing within the range shown)). Just calculating this sequence from A165562 gives a list that is not sorted in ascending order and contains duplicate items. However, since in the range from 1 to 10000 only the number 1 and the primes have arithmetic derivatives that are less than their square roots, I feel confident that the list given above is not missing some term that corresponds to a large value in A165562. In other words, for a term to be missing from the list above, its corresponding value in A165562 would have to be less than 625. - Alonso del Arte, Oct 30 2009

Examples

			71 is in the list because: n=46 -> n'=25 -> n+n'=71; n=51 -> n'=20 -> n+n'=71; n=55 -> n'=16 -> n+n'=71.
		

Crossrefs

Programs

  • Maple
    isA165561 := proc(n)
        if isprime(n) then
            for i from 1 to n do
                if n = A129283(i) then
                    return true ;
                end if;
            end do:
            false ;
        else
            false;
        end if;
    end proc:
    for n from 2 to 1000 do
        if isA165561(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Feb 04 2022
  • Mathematica
    (*First run the program given in A165562*) SetAttributes[a, Listable]; A165561 = Union[A165562 + a[A165562]]

Formula

{p in A000040: p in A129283}. - R. J. Mathar, Feb 04 2022

Extensions

Terms verified by Alonso del Arte, Oct 30 2009

A229269 Numbers k for which k - k' is prime, k' being the arithmetic derivative of k.

Original entry on oeis.org

3, 9, 10, 14, 15, 21, 26, 33, 35, 38, 39, 50, 51, 62, 65, 66, 69, 70, 77, 78, 86, 91, 93, 95, 102, 110, 111, 114, 122, 123, 129, 130, 133, 138, 146, 154, 159, 161, 170, 174, 190, 201, 203, 206, 209, 213, 215, 217, 218, 221, 222, 230, 238, 249, 258, 278, 282, 287
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			15 is in the list because 15’ = 8 and 15 - 8 = 7 that is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if isprime(n-a) then print(n); fi; od; end: P(10^5);
  • Python
    from sympy import isprime, factorint
    A229269 = [n for n in range(1,10**4) if isprime(n-sum([int(n*e/p) for p,e in factorint(n).items()]))] # Chai Wah Wu, Aug 21 2014

A229270 Numbers k for which k' - k is prime, k' being the arithmetic derivative of k.

Original entry on oeis.org

18, 210, 315, 330, 390, 462, 510, 546, 690, 726, 798, 870, 930, 966, 1110, 1218, 1230, 1290, 1302, 1554, 1590, 1770, 2010, 2130, 2190, 2310, 2370, 2490, 2730, 2910, 3030, 3210, 3270, 3570, 3810, 4110, 4290, 4470, 4530, 4830, 4890, 5010, 5430, 5790, 5910, 5970
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			315 is in the list because 315’ = 318 and 318 - 315 = 3 that is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if isprime(a-n) then print(n); fi; od; end: P(10^5);
  • Python
    from sympy import isprime, factorint
    A229270 = [n for n in range(1,10**5) if isprime(sum([int(n*e/p) for p,e in factorint(n).items()])-n)] # Chai Wah Wu, Aug 21 2014

A229272 Numbers n for which n' + n and n' - n are both prime, n' being the arithmetic derivative of n.

Original entry on oeis.org

210, 330, 390, 690, 798, 966, 1110, 1230, 2190, 2310, 2730, 3270, 4110, 4530, 4890, 5430, 6090, 6270, 6810, 6990, 7230, 7890, 8310, 8490, 9030, 9210, 9282, 10470, 10590, 10770, 12090, 12210, 12270, 12570, 12810, 12930, 13110, 13830, 14070, 17070, 17094, 17310
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Comments

Intersection of A165561 and A229270.

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    if isprime(a+n) and isprime(a-n) then print(n); fi;
    od; end: P(10^5);
  • Python
    from sympy import isprime, factorint
    A229272 = []
    for n in range(1, 10**5):
        np = sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0
        if isprime(np+n) and isprime(np-n):
            A229272.append(n)
    # Chai Wah Wu, Aug 21 2014

A229271 Numbers k for which k + k' and k - k' are both prime, k' being the arithmetic derivative of k.

Original entry on oeis.org

10, 14, 15, 21, 26, 33, 35, 38, 51, 65, 66, 78, 86, 93, 102, 110, 111, 123, 161, 201, 203, 206, 209, 215, 221, 230, 258, 278, 282, 321, 371, 374, 395, 398, 402, 413, 438, 470, 471, 485, 530, 533, 543, 545, 551, 590, 626, 671, 678, 698, 723, 755, 779, 803, 815
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Comments

Intersection of A165561 and A229269.

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    if isprime(n+a) and isprime(n-a) then print(n); fi;
    od; end: P(10^5);

A188145 Solutions of the equation n" - n' - n = 0, where n' and n" are the first and second arithmetic derivatives (see A003415).

Original entry on oeis.org

0, 20, 135, 164, 1107, 15625, 43692, 128125, 188228, 294921, 1270539, 4117715, 33765263, 34134375, 147053125, 8995560189, 19348535652, 38753462951
Offset: 1

Views

Author

Paolo P. Lava, Mar 22 2011

Keywords

Comments

Solutions of the similar equation n”-n’+n=0 are 30, 858, 1722, etc., apparently Giuga numbers whose derivative is a prime number. In fact the equation can be rewritten as n'=n+n" and if n"=1 it is the conjecture in A007850.
a(16) > 2*10^9. - Donovan Johnson, Apr 30 2011
a(19) > 10^11. - Giovanni Resta, Jun 04 2016

Examples

			n=20, n’=24, n”=44 -> 44-24-20=0;  n=135, n’=162, n”=297 -> 297-162-135=0
		

Crossrefs

Programs

  • Haskell
    import Data.List (zipWith3, elemIndices)
    a188145 n = a188145_list !! (n-1)
    a188145_list = elemIndices 0 $ zipWith3 (\x y z -> x - y - z)
       (map a003415 a003415_list) a003415_list [0..]
    -- Reinhard Zumkeller, May 10 2011
  • Maple
    readlib(ifactors):
    Der:= proc(n)
    local a,b,i,p,pfs;
    for i from 0 to n do
      if i<=1 then a:=0;
      else pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs) ;
      fi;
      if a<=1 then b:=0;
      else pfs:=ifactors(a)[2]; b:=a*add(op(2,p)/op(1,p),p=pfs) ;
      fi;
      if b-a=i then lprint(i,a,b); fi;
    od
    end:
    Der(10000000);

Extensions

a(13)-a(15) from Donovan Johnson, Apr 30 2011
Corrected a(9) and a(16)-a(18) from Giovanni Resta, Jun 04 2016

A210935 Numbers n for which n*n'/(n+n') is an integer, where n' is the arithmetic derivative of n.

Original entry on oeis.org

1, 4, 64, 80, 108, 270, 351, 432, 729, 768, 864, 2916, 5184, 5832, 6250, 6912, 12096, 13500, 16384, 25600, 32832, 34992, 37500, 39366, 43200, 46656, 50000, 73008, 74304, 81648, 84375, 110592, 131250, 138240, 143748, 153664, 172800, 176418, 200000, 225000
Offset: 1

Views

Author

Paolo P. Lava, May 11 2012

Keywords

Comments

Only eleven odd numbers in the first 150 terms: a(1)=1, a(7)=351, a(9)=729, a(31)=84375, a(76)=2470629, a(78)=2709375, a(87)=4159375, a(89)=4348377, a(115)=13286025, a(126)=22235661, a(128)=25059375.

Examples

			n=729; n'=1458; n*n'/(n+n')=486.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A210935:= proc(n)
    local a,i,p,pfs;
    for i from 1 to n do
        pfs:=ifactors(i)[2];  a:=i*add(op(2,p)/op(1,p),p=pfs) ;
        if a*i/(a+i)=trunc(a*i/(a+i)) then print(i); fi;
    od; end:
    A210935(100000000);
Showing 1-7 of 7 results.