A165665 a(n) = (3*2^n - 2) * 2^n.
1, 8, 40, 176, 736, 3008, 12160, 48896, 196096, 785408, 3143680, 12578816, 50323456, 201310208, 805273600, 3221159936, 12884770816, 51539345408, 206157905920, 824632672256, 3298532786176, 13194135339008, 52776549744640
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Programs
-
Magma
[ (3*2^n-2)*2^n: n in [0..23] ];
-
Mathematica
Table[(3*2^n-2)2^n,{n,0,30}] (* or *) LinearRecurrence[{6,-8},{1,8},30] (* Harvey P. Dale, Nov 18 2020 *)
-
PARI
a(n)=(3*2^n-2)*2^n \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 6*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
a(n) = 8*A010036(n-1) for n > 0.
G.f.: (2*x+1)/((1-2*x)*(1-4*x)).
E.g.f.: 3*e^(4*x) - 2*e^(2*x). - Robert Israel, Dec 15 2014
Comments