cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217134 Numbers n such that 5^n - 8 is prime.

Original entry on oeis.org

2, 4, 10, 14, 88, 112, 140, 764, 3040, 11096, 24934, 25616, 54584, 93400
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(15) > 10^5. - Robert Price, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 5000], PrimeQ[5^# - 8] &]
  • PARI
    for(n=2, 5*10^3, if(isprime(5^n-8), print1(n", ")))

Extensions

a(10)-a(14) from Robert Price, Feb 03 2014

A290007 Prime numbers of the form 5^k - 6.

Original entry on oeis.org

19, 619, 3119, 15619, 9765619, 11102230246251565404236316680908203119, 132348898008484427979425390731194056570529937744140619, 2067951531382569187178521730174907133914530277252197265619, 32311742677852643549664402033982923967414535582065582275390619
Offset: 1

Views

Author

Robert Price, Sep 03 2017

Keywords

Crossrefs

Cf. A165701.

Programs

  • Mathematica
    Select[Table[5^k - 6, {k, 2, 100}], PrimeQ[#] &]

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A378868 Numbers k such that 5^k - 22 is prime.

Original entry on oeis.org

2, 3, 31, 79, 491, 3019, 3623, 4175, 9957, 21963, 71637, 80551, 80831
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Comments

a(14) > 10^5. - Michael S. Branicky, Dec 24 2024

Examples

			3 is a term because 5^3 - 22 = 103 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k-22)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#-22]&]

Extensions

a(8)-a(10) from Michael S. Branicky, Dec 17 2024
a(11)-a(13) from Michael S. Branicky, Dec 22 2024
Showing 1-4 of 4 results.