A165716 Number of tilings of a 3 X n rectangle using dominoes and right trominoes.
1, 0, 5, 8, 55, 140, 633, 1984, 7827, 26676, 99621, 351080, 1283247, 4583580, 16611505, 59652624, 215457835, 775371268, 2796772765, 10073343672, 36315180295, 130843331180, 471599612393, 1699398816608, 6124635653443, 22071172760532, 79541846573973
Offset: 0
Examples
a(2) = 5, because there are 5 tilings of a 3 X 2 rectangle using dominoes and right trominoes: .___. .___. ._._. .___. .___. |___| |_._| | | | | ._| |_. | |___| | | | |_|_| |_| | | |_| |___| |_|_| |___| |___| |___|
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..550
- Index entries for linear recurrences with constant coefficients, signature (2,6,-4,11,2).
Crossrefs
Column k=3 of A219987.
Programs
-
Maple
a:= n-> (Matrix([[55, 8, 5, 0, 1]]). Matrix(5, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 6, -4, 11, 2][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..25);
-
Mathematica
a[n_] := Last[{55, 8, 5, 0, 1} . MatrixPower[ Table[ Which[i == j - 1, 1, j == 1, {2, 6, -4, 11, 2}[[i]], True, 0], {i, 1, 5}, {j, 1, 5}], n]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 19 2012, translated from Maple *) LinearRecurrence[{2,6,-4,11,2},{1,0,5,8,55},30] (* Harvey P. Dale, Mar 19 2013 *)
Formula
G.f.: (2*x^4 - 2*x^3 + x^2 + 2*x - 1) / (2*x^5 + 11*x^4 - 4*x^3 + 6*x^2 + 2*x - 1).
a(0)=1, a(1)=0, a(2)=5, a(3)=8, a(4)=55, a(n) = 2*a(n-1) + 6*a(n-2) - 4*a(n-3) + 11*a(n-4) + 2*a(n-5). - Harvey P. Dale, Mar 19 2013