cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165716 Number of tilings of a 3 X n rectangle using dominoes and right trominoes.

Original entry on oeis.org

1, 0, 5, 8, 55, 140, 633, 1984, 7827, 26676, 99621, 351080, 1283247, 4583580, 16611505, 59652624, 215457835, 775371268, 2796772765, 10073343672, 36315180295, 130843331180, 471599612393, 1699398816608, 6124635653443, 22071172760532, 79541846573973
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2009

Keywords

Examples

			a(2) = 5, because there are 5 tilings of a 3 X 2 rectangle using dominoes and right trominoes:
.___. .___. ._._. .___. .___.
|___| |_._| | | | | ._| |_. |
|___| | | | |_|_| |_| | | |_|
|___| |_|_| |___| |___| |___|
		

Crossrefs

Column k=3 of A219987.

Programs

  • Maple
    a:= n-> (Matrix([[55, 8, 5, 0, 1]]). Matrix(5, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 6, -4, 11, 2][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..25);
  • Mathematica
    a[n_] := Last[{55, 8, 5, 0, 1} . MatrixPower[ Table[ Which[i == j - 1, 1, j == 1, {2, 6, -4, 11, 2}[[i]], True, 0], {i, 1, 5}, {j, 1, 5}], n]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 19 2012, translated from Maple *)
    LinearRecurrence[{2,6,-4,11,2},{1,0,5,8,55},30] (* Harvey P. Dale, Mar 19 2013 *)

Formula

G.f.: (2*x^4 - 2*x^3 + x^2 + 2*x - 1) / (2*x^5 + 11*x^4 - 4*x^3 + 6*x^2 + 2*x - 1).
a(0)=1, a(1)=0, a(2)=5, a(3)=8, a(4)=55, a(n) = 2*a(n-1) + 6*a(n-2) - 4*a(n-3) + 11*a(n-4) + 2*a(n-5). - Harvey P. Dale, Mar 19 2013