cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165719 Integers of the form k*(k+9)/8.

Original entry on oeis.org

14, 17, 45, 50, 92, 99, 155, 164, 234, 245, 329, 342, 440, 455, 567, 584, 710, 729, 869, 890, 1044, 1067, 1235, 1260, 1442, 1469, 1665, 1694, 1904, 1935, 2159, 2192, 2430, 2465, 2717, 2754, 3020, 3059, 3339, 3380, 3674, 3717, 4025, 4070, 4392, 4439, 4775
Offset: 1

Views

Author

Keywords

Comments

Only one term is a prime number (17). Are all others composite?
There is no prime other than 17 in the first 1 million terms. - Harvey P. Dale, Jan 07 2020
Integers of the form k+k*(k+1)/8 = k+A000217(k)/4; for k see A047521, for A000217(k)/4 see A154260.

Examples

			for k = 1,2,..., k(k+9)/8 is 5/4, 11/4, 9/2, 13/2, 35/4, 45/4, 14, 17,.. and the integer values out of these become the sequence.
		

Crossrefs

Programs

  • Mathematica
    q=4;s=0;lst={};Do[s+=((n+q)/q);If[IntegerQ[s],AppendTo[lst,s]],{n,6!}];lst
    Select[Table[(n(n+9))/8,{n,200}],IntegerQ] (* or *) Rest[Flatten[Table[ {9n+8n^2,14+23n+8n^2},{n,0,30}]]] (* or *) LinearRecurrence[{1,2,-2,-1,1},{14,17,45,50,92},60] (* Harvey P. Dale, Jan 07 2020 *)

Formula

From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 2*n^2 + 6*n + 9/4 - 3*(-1)^n*(2*n+3)/4.
G.f.: x*(-14-3*x+x^3)/((1+x)^2 * (x-1)^3 ). (End)
Sum_{n>=1} 1/a(n) = 89/81 - (sqrt(2)+1)*Pi/9. - Amiram Eldar, Jul 26 2024

Extensions

Definition simplified by R. J. Mathar, Sep 25 2009