cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A165949 a(n) = A027762(n)/A165734(n).

Original entry on oeis.org

1, 1, 7, 1, 11, 91, 1, 17, 133, 11, 23, 91, 1, 29, 2387, 17, 1, 63973, 1, 451, 301, 23, 47, 1547, 11, 53, 133, 29, 59, 1892891, 1, 17, 10787, 1, 781, 4670029, 1, 1, 553, 7667, 83, 113477, 1, 2047, 45353, 47, 1, 150059, 1, 1111, 721, 53, 107, 6973057, 253, 55709, 7
Offset: 1

Views

Author

Paul Curtz, Oct 01 2009

Keywords

Crossrefs

Cf. A124886.

Programs

  • Maple
    A165734 := proc(n) op( 1+(n mod 2),[30,6]) ; end:
    A027762 := proc(n) a := 0 ; p := 2 ; while p-1 <= 2*n do if (2*n) mod (p-1) = 0 then a := a+1/p ; fi; p := nextprime(p) ; od: denom(a) ; end:
    A165949 := proc(n) A027762(n)/A165734(n) ; end: seq(A165949(n),n=1..80) ; # R. J. Mathar, Oct 05 2009
  • Mathematica
    a[n_] := Numerator[ Denominator[ BernoulliB[2*n, 1/2]]/(3*5*2^(2*n))]; Array[a, 57] (* Jean-François Alcover, Apr 17 2013, after Paul Curtz *)

Extensions

Extended by R. J. Mathar, Oct 05 2009

A176909 Decimal expansion of sqrt(230).

Original entry on oeis.org

1, 5, 1, 6, 5, 7, 5, 0, 8, 8, 8, 1, 0, 3, 1, 0, 1, 1, 0, 8, 5, 1, 3, 6, 5, 0, 8, 7, 2, 5, 6, 4, 1, 4, 3, 1, 0, 9, 0, 9, 9, 2, 8, 4, 2, 7, 9, 0, 3, 4, 9, 2, 4, 5, 0, 6, 4, 5, 2, 4, 2, 0, 0, 3, 5, 5, 8, 4, 4, 6, 6, 7, 7, 3, 6, 5, 0, 8, 4, 9, 9, 3, 1, 8, 2, 8, 1, 2, 1, 8, 6, 2, 8, 2, 7, 8, 9, 2, 8, 0, 7, 0, 6, 7, 3
Offset: 2

Views

Author

Klaus Brockhaus, Apr 28 2010

Keywords

Comments

Continued fraction expansion of sqrt(230) is 15 followed by A165734.

Examples

			sqrt(230) = 15.16575088810310110851...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A002163 (decimal expansion of sqrt(5)), A010479 (decimal expansion of sqrt(23)), A176906 (decimal expansion of (15+sqrt(230))/5), A165734 (repeat 6, 30).

A176906 Decimal expansion of (15+sqrt(230))/5.

Original entry on oeis.org

6, 0, 3, 3, 1, 5, 0, 1, 7, 7, 6, 2, 0, 6, 2, 0, 2, 2, 1, 7, 0, 2, 7, 3, 0, 1, 7, 4, 5, 1, 2, 8, 2, 8, 6, 2, 1, 8, 1, 9, 8, 5, 6, 8, 5, 5, 8, 0, 6, 9, 8, 4, 9, 0, 1, 2, 9, 0, 4, 8, 4, 0, 0, 7, 1, 1, 6, 8, 9, 3, 3, 5, 4, 7, 3, 0, 1, 6, 9, 9, 8, 6, 3, 6, 5, 6, 2, 4, 3, 7, 2, 5, 6, 5, 5, 7, 8, 5, 6, 1, 4, 1, 3, 4, 7
Offset: 1

Views

Author

Klaus Brockhaus, Apr 28 2010

Keywords

Comments

Continued fraction expansion of (15+sqrt(230))/5 is A165734.

Examples

			(15+sqrt(230))/5 = 6.03315017762062022170...
		

Crossrefs

Cf. A176909 (decimal expansion of sqrt(230)), A165734 (repeat 6, 30).

A216639 A027642(6*n+6)/(sequence of period 2:repeat 42,210).

Original entry on oeis.org

1, 13, 19, 13, 341, 9139, 43, 221, 19, 270413, 1541, 667147, 79, 16211, 6479, 21437, 103, 996151, 1, 11086933, 103759, 20033, 6533, 11341499, 51491, 8545667, 3097, 16211, 59, 34408161359, 1, 4137341, 5826521, 1339, 219666403, 72719023, 223, 2977, 1501, 45423164501, 83
Offset: 0

Views

Author

Paul Curtz, Sep 12 2012

Keywords

Comments

Is a(n) always an integer? Is there an a(n) ending with 5?
It appears (tested for n <= 800) that a(n) mod 9 is always one of {1, 2, 4, 5, 7, 8}.
There is a similar sequence of ratios A027642(10n+1)/(66*A010686(n)) which starts 1, 1, 217, 41, 1, 172081, 71, 697, 4123, 101, 23, 7055321, 131, 2059, 32767, 697, 1, 21896102683,...
a(n) is always an integer: 42 = 2*3*7 and 1, 2, and 6 divide 12n+6; 210 = 2*3*5*7 and 1, 2, 4, and 6 divide 12n+12. a(n) never ends in 5 (or 0) since 12n+6 is not divisible by 4 hence the (12n+6)-th Bernoulli denominator is not divisible by 5, and Bernoulli denominators are squarefree and hence the (12n+12)-th Bernoulli denominator, divided by 210, cannot be divisible by 5. - Charles R Greathouse IV, Sep 12 2012
The previous comments argue that 3 or 5 are never prime divisors of a(n). In addition (tested up to n <=900), 7 apparently is also a non-divisor of a(n). In summary, the prime divisors appear all to be in A140461. - Jean-François Alcover, Sep 17 2012

Crossrefs

Programs

Formula

a(n) = A027642(6*n+6)/(42*A010686(n)).

Extensions

a(20)-a(40) from Charles R Greathouse IV, Sep 12 2012

A228838 a(n) = n * A002445(n).

Original entry on oeis.org

0, 6, 60, 126, 120, 330, 16380, 42, 4080, 7182, 3300, 1518, 32760, 78, 12180, 214830, 8160, 102, 34545420, 114, 270600, 37926, 15180, 6486, 1113840, 1650, 41340, 21546, 24360, 10266, 1703601900, 186, 16320, 2135826, 1020, 164010, 5043631320, 222, 1140
Offset: 0

Views

Author

Paul Curtz, Sep 05 2013

Keywords

Comments

a(n+1) is a multiple of A040031(n+1), sequence of period 2: 6, 12.
a(n) is divisible by A040879(n)=30 followed by the sequence of period 2: 6, 60. See A040214 and A165734.
Note that A164877(n) + A000367(n) = A164558(2n).

Examples

			a(0)=0*1, a(1)=1*6, a(2)=2*30=60,, a(3)=3*42=126.
		

Programs

  • PARI
    a(n)=n*denominator(bernfrac(2*n))

Formula

a(n) = A176328(2n) - A000367(n).
a(n) = A164877(n)/2.
a(n+1) = A111008(n) * A036283(n+1).
2*a(n) = A164558(2n) - A000367(n).
a(n) = A164558(2n) - A176328(2n).

Extensions

Typo in data fixed by Colin Barker, Jul 03 2015

A212655 Denominator of Bernoulli(2*n,1/2) / Period of length 2: repeat 12, 60.

Original entry on oeis.org

1, 4, 112, 64, 2816, 93184, 4096, 278528, 8716288, 2883584
Offset: 1

Views

Author

Paul Curtz, Apr 14 2013

Keywords

Comments

See A165949(n) = (A027642(n+1)=A027762(n))/A165734(n).
a(n) is divisible by 4^(n-1).

Examples

			a(1) = (B(2,1/2)=12)/12=1, a(2)=240/60=4, a(3)=1344/12=112, a(4)=3840/60=64.
		

Crossrefs

Cf. A000302.

Formula

a(n) = A033469(n)/A040874(n).
a(n) = 4^(n-1) * A165949(n).

A214867 Quotients of (first) primorial numbers and denominators of Bernoulli numbers B 0, B 1, B 2, B 4, B 6,... .

Original entry on oeis.org

1, 1, 1, 1, 5, 77, 455, 187, 1616615, 437437, 8107385, 607759061, 53773464745, 111446982977, 2180460221945005, 706769865044243, 2275461421392965, 3770118333635711057, 19548063559901161830545, 4094603218587147211, 92990138354449826827902565
Offset: 0

Views

Author

Paul Curtz, Mar 10 2013

Keywords

Comments

a(2*n+4) is divisible by 5 (because A006954(n+2)=6,30,42,30,... is divisible by A165734(n)=period of length 2: repeat 6,30).

Examples

			a(0) = 1/1, a(1)= 2/2, a(2) = 6/6, a(3) = 30/30, a(4) =210/42=5.
By product (see A080092):
1,
1,
1,
1,
5,
7  * 11,
5  *  7 *13,
11 * 17,
5  *  7 *11 *13 *17 *19,
7  * 11 *13 *19 *23,
5  * 11 *13 *17 *23 *29,
7  * 13 *17 *19 *23 *29 *31,
5  *  7 *11 *13 *17 *19 *29 *31 *37.
		

Programs

  • Mathematica
    a[n_] := Product[ Prime[k], {k,1, n}] / Denominator[ BernoulliB[2*n-2] ]; a[0] = a[1] = 1; Table[a[n],{n,0,20}] (* Jean-François Alcover, Mar 15 2013 *)

Formula

a(n) = A002110(n)/A006954(n).

Extensions

More terms from Jean-François Alcover, Mar 15 2013
Showing 1-7 of 7 results.