cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165788 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204845, 34867843200, 313810585200, 2824295234400, 25418656818000, 228767908737600, 2058911155018800, 18530200182592800, 166771799730147600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204845];; for n in [11..20] do a[n]:=8*Sum([1..9], j-> a[n-j]) -36*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11) )); // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 08 2016 *)
    coxG[{10, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 22 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11)) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    def A165788_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11)).list()
    A165788_list(20) # G. C. Greubel, Sep 22 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).