A165795 Array A(n, k) = numerator of 1/n^2 - 1/k^2 with A(0,k) = 1 and A(n,0) = -1, read by antidiagonals.
1, -1, 1, -1, 0, 1, -1, -3, 3, 1, -1, -8, 0, 8, 1, -1, -15, -5, 5, 15, 1, -1, -24, -3, 0, 3, 24, 1, -1, -35, -21, -7, 7, 21, 35, 1, -1, -48, -2, -16, 0, 16, 2, 48, 1, -1, -63, -45, -1, -9, 9, 1, 45, 63, 1, -1, -80, -15, -40, -5, 0, 5, 40, 15, 80, 1, -1, -99, -77, -55, -33, -11, 11, 33, 55, 77, 99, 1
Offset: 0
Examples
The array, A(n, k), of numerators starts in row n=0 with columns m>=0 as: .1...1...1...1...1...1...1...1...1...1...1. -1...0...3...8..15..24..35..48..63..80..99. A005563, A147998 -1..-3...0...5...3..21...2..45..15..77...6. A061037, A070262 -1..-8..-5...0...7..16...1..40..55...8..91. A061039 Antidiagonal triangle, T(n, k), begins as: 1; -1, 1; -1, 0, 1; -1, -3, 3, 1; -1, -8, 0, 8, 1; -1, -15, -5, 5, 15, 1; -1, -24, -3, 0, 3, 24, 1; -1, -35, -21, -7, 7, 21, 35, 1;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[k==n, 1, If[k==0, -1, Numerator[1/(n-k)^2 - 1/k^2]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 10 2022 *)
-
Sage
def A165795(n,k): if (k==n): return 1 elif (k==0): return -1 else: return numerator(1/(n-k)^2 -1/k^2) flatten([[A165795(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 10 2022
Formula
A(n, k) = numerator(1/n^2 - 1/k^2) with A(0,k) = 1 and A(n,0) = -1 (array).
A(n, 0) = -A158388(n).
A(n, k) = A172157(n,k), n>=1.
From G. C. Greubel, Mar 10 2022: (Start)
T(n, k) = numerator(1/(n-k)^2 -1/k^2), with T(n,n) = 1, T(n,0) = -1 (triangle).
A(n, n) = T(2*n, n) = 0^n.
Sum_{k=0..n} T(n, k) = 0^n.
T(n, n-k) = -T(n,k).
T(2*n+1, n) = -A005408(n). (End)
Comments