cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375286 a(n) = f(1) + f(2) + ... + f(n), where f(n) = (-2)^Omega(n) = A165872(n).

Original entry on oeis.org

1, -1, -3, 1, -1, 3, 1, -7, -3, 1, -1, -9, -11, -7, -3, 13, 11, 3, 1, -7, -3, 1, -1, 15, 19, 23, 15, 7, 5, -3, -5, -37, -33, -29, -25, -9, -11, -7, -3, 13, 11, 3, 1, -7, -15, -11, -13, -45, -41, -49, -45, -53, -55, -39, -35, -19, -15, -11, -13, 3, 1, 5, -3, 61
Offset: 1

Views

Author

Keywords

Crossrefs

Partial sums of A165872.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 0,
          a(n-1)+(-2)^numtheory[bigomega](n))
        end:
    seq(a(n), n=1..64);  # Alois P. Heinz, Apr 25 2025
  • PARI
    s=0; vector(60,n,s+=(-2)^bigomega(n))

Formula

Johnston, Leong, & Tudzi prove that |a(n)| < 2260n. Sun conjectures that |a(n)| < n for n >= 3078. Mossinghoff & Trudgian verify this to 2.5 * 10^14.
Because of powers of two, |a(n)| >= n/2 infinitely often.

A351023 Dirichlet g.f.: Product_{k>=2} 1 / (1 + 2 * k^(-s)).

Original entry on oeis.org

1, -2, -2, 2, -2, 2, -2, -6, 2, 2, -2, -2, -2, 2, 2, 14, -2, -2, -2, -2, 2, 2, -2, 10, 2, 2, -6, -2, -2, 2, -2, -26, 2, 2, 2, 6, -2, 2, 2, 10, -2, 2, -2, -2, -2, 2, -2, -18, 2, -2, 2, -2, -2, 10, 2, 10, 2, 2, -2, 2, -2, 2, -2, 50, 2, 2, -2, -2, 2, 2, -2, -14, -2, 2, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 29 2022

Keywords

Crossrefs

Showing 1-2 of 2 results.