cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165876 Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093749880, 9226406246400, 138396093669120, 2075941404633600, 31139121063456000, 467086815861120000, 7006302236556000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170735, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093749880];; for n in [11..20] do a[n]:=14*Sum([1..9], j-> a[n-j]) -105*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-15*t+129*t^10-105*t^11) )); // G. C. Greubel, Aug 10 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-15*t+129*t^10-105*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 23 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-15*t+129*t^10-105*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 17 2016 *)
    coxG[{10, 105, -14}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-15*t+129*t^10-105*t^11)) \\ G. C. Greubel, Aug 07 2017
    
  • Sage
    def A165876_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-15*t+129*t^10-105*t^11)).list()
    A165876_list(20) # G. C. Greubel, Aug 10 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^10 - 14*t^9 - 14*t^8 - 14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 - 14*t^2 - 14*t + 1).