A165883 Irregular triangle T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1-x)^(2*n+3)*( Sum_{j >= 0} (2*j+ 1)^n*x^j )*( Sum_{j >= 0} j^(n+1)*x^j ), read by rows.
1, 1, 2, 1, 1, 10, 26, 10, 1, 1, 34, 287, 508, 287, 34, 1, 1, 102, 2272, 11098, 19134, 11098, 2272, 102, 1, 1, 294, 15493, 169432, 675706, 1042948, 675706, 169432, 15493, 294, 1, 1, 842, 98374, 2151026, 17138559, 55643460, 82178676, 55643460, 17138559, 2151026, 98374, 842, 1
Offset: 0
Examples
Irregular triangle begins as: 1; 1, 2, 1; 1, 10, 26, 10, 1; 1, 34, 287, 508, 287, 34, 1; 1, 102, 2272, 11098, 19134, 11098, 2272, 102, 1; 1, 294, 15493, 169432, 675706, 1042948, 675706, 169432, 15493, 294, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Mathematica
p[n_, x_]:= p[n, x]= (1/x)*(1-x)^(2*n+3)*Sum[(2*k+1)^n*x^k, {k,0,Infinity}]*Sum[k^(n+1)*x^k, {k,0,Infinity}]; Table[CoefficientList[p[n, x], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 08 2022 *)
-
Sage
def p(n,x): return (1/x)*(1-x)^(2*n+3)*sum( (2*j+1)^n*x^j for j in (0..2*n+3) )*sum( j^(n+1)*x^j for j in (0..2*n+3) ) def T(n,k): return ( p(n,x) ).series(x, 2*n+1).list()[k] flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 08 2022
Formula
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (1-x)^(2*n+3)*( Sum_{j >= 0} (2*j+ 1)^n*x^j )*( Sum_{j >= 0} j^(n+1)*x^j ).
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = 2^n*(1-x)^(2*n+3)*LerchPhi(x, -n, 1/2)*PolyLog(-n-1, x)/x.
T(n, n-k) = T(n, k). - G. C. Greubel, Mar 08 2022
Extensions
Edited by G. C. Greubel, Mar 08 2022