A165895 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024551, 366957381510720, 7706105011623480, 161828205241958640, 3398392310036308200, 71366238509821184160
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (20,20,20,20,20,20,20,20,20,-210).
Programs
-
GAP
a:=[22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024551];; for n in [11..25] do a[n]:=20*Sum([1..9], j-> a[n-j]) -210*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 25 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-21*t+230*t^10-210*t^11) )); // G. C. Greubel, Sep 25 2019 -
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-21*t+230*t^10-210*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 25 2019
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-21*t+230*t^10-210*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 17 2016 *) coxG[{10, 210, -20}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 25 2019 *)
-
PARI
my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-21*t+230*t^10-210*t^11)) \\ G. C. Greubel, Sep 25 2019
-
Sage
def A165895_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^10)/(1-21*t+230*t^10-210*t^11)).list() A165895_list(20) # G. C. Greubel, Sep 25 2019
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^10 - 20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
Comments