cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A166024 Define dsf(n) = A045503(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the decimal digits of n. Starting with a(1) = 421845123, a(n+1) = dsf(a(n)).

Original entry on oeis.org

421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890
Offset: 1

Views

Author

Ryohei Miyadera, Satoshi Hashiba and Koichiro Nishimura, Oct 04 2009

Keywords

Comments

In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined.
Periodic with period 2.

Examples

			dsf(421845123) = 16780890 and dsf(16780890) = 421845123, so these 2 numbers make a loop for the function dsf.
		

Crossrefs

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf, 421845123,4]
    LinearRecurrence[{0, 1},{421845123, 16780890},24] (* Ray Chandler, Aug 25 2015 *)

Formula

a(n+1) = dsf(a(n)).

Extensions

Comment and editing by Charles R Greathouse IV, Aug 02 2010
Second sentence of Name moved to Example by Michael De Vlieger, Aug 24 2023

A166072 Define dsf(n) = A045503(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the decimal digits of n. dsf(809265896) = 808491852 and dsf(808491852) = 437755524,...,dsf(792488396) = 809265896, so these 8 numbers make a loop for the function dsf.

Original entry on oeis.org

809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396, 809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396, 809265896, 808491852, 437755524, 1657004, 873583
Offset: 1

Views

Author

Ryohei Miyadera, Satoshi Hashiba and Koichiro Nishimura, Oct 06 2009

Keywords

Comments

In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined. We have discovered this fact through calculations using Mathematica and general-purpose languages.
Periodic with period 8.

Crossrefs

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf, 809265896,16]
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396},24] (* Ray Chandler, Aug 25 2015 *)

Formula

a(n+1) = dsf(a(n)).

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010
Extended by Ray Chandler, Aug 25 2015

A166121 Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. dsf(791621579) = 776537851 and dsf(776537851) = 19300779, ..., dsf(824599) = 791621579, ... in this way these 11 numbers make a loop for the function dsf.

Original entry on oeis.org

791621579, 776537851, 19300779, 776488094, 422669176, 388384265, 50381743, 17604196, 388337603, 34424740, 824599, 791621579, 776537851, 19300779, 776488094, 422669176, 388384265, 50381743, 17604196, 388337603, 34424740
Offset: 1

Views

Author

Ryohei Miyadera, Takuma Nakaoka and Koichiro Nishimura, Oct 07 2009

Keywords

Comments

In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined. We have discovered this fact through calculations using Mathematica and general-purpose languages.

Examples

			This is an reiterative process that starts with 791621579.
		

Crossrefs

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf,791621579,22]

Formula

Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. By applying the function dsf to 791621579 we can get a loop of length 11.

A166227 Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. dsf(793312220) = 388244100 and dsf(388244100) = 33554978, ..., dsf(387467199) = 793312220, ... in this way these 40 numbers make a loop for the function dsf.

Original entry on oeis.org

793312220, 388244100, 33554978, 405027808, 34381363, 16824237, 17647707, 3341086, 16824184, 33601606, 140025, 3388, 33554486, 16830688, 50424989, 791621836, 405114593, 387427281, 35201810, 16780376, 18517643, 17650825, 17653671, 1743552, 830081, 33554462, 53476, 873607, 18470986, 421845378, 34381644, 16824695, 404294403, 387421546, 17651084, 17650799, 776537847, 20121452, 3396, 387467199, 793312220
Offset: 1

Views

Author

Ryohei Miyadera, Takuma Nakaoka and Koichiro Nishimura, Oct 09 2009

Keywords

Comments

In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined. We have discovered this fact through calculations using Mathematica and general-purpose languages.

Examples

			This is an reiterative process that starts with 7793312220.
		

Crossrefs

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf,7793312220,80]
  • PARI
    dsf(n) = my(d = digits(n)); sum(i=1, #d, d[i]^d[i]); \\ Michel Marcus, Apr 21 2014

Formula

Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. By applying the function dsf to 793312220 we can get a loop of length 40.

Extensions

More terms from Michel Marcus, Apr 21 2014

A166383 Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. dsf(1583236420) =1682731 and dsf(1682731) = 18470991,...,dsf(388290999) = 1583236420,.. in this way this 97 numbers make a loop for the function dsf. In fact this is the longest loop for dsf function in the set of all nonnegative integers.

Original entry on oeis.org

1583236420, 16827317, 18470991, 792441996, 1163132183, 16823961, 404291050, 387424134, 17601586, 17697199, 1163955211, 387473430, 18424896, 421022094, 387421016, 17647705, 2520668, 16873662, 17740759, 389894501, 808398820
Offset: 1

Views

Author

Ryohei Miyadera, Oct 13 2009

Keywords

Comments

In fact there are only 8 loops in the whole nonnegative integers for the dsf-function that we defined. We have discovered this fact with the calculation by Mathematica and other general purpose languages. We have presented 6 loops to this On-Line Encyclopedia of Integer Sequences, and other two loops are in fact fixed points {1} and {3435}. It is easy to see that dsf(1) = 1 and dsf(3435) = 3^3+4^4+3^3+5^5=3435.

Examples

			This is an iterative process that starts with 1583236420.
		

Crossrefs

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf,1583236420,194]

Formula

Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. By applying the function dsf to 1583236420 repeatedly we can get a loop of the length of 97.
Showing 1-5 of 5 results.