cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A165961 Number of circular permutations of length n without 3-sequences.

Original entry on oeis.org

1, 5, 20, 102, 627, 4461, 36155, 328849, 3317272, 36757822, 443846693, 5800991345, 81593004021, 1228906816941, 19733699436636, 336554404751966, 6075478765948135, 115734570482611885, 2320148441078578447, 48827637296350480457, 1076313671861962141616
Offset: 3

Views

Author

Isaac Lambert, Oct 01 2009

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n. 3-sequences are of the form i,i+1,i+2. Sequence gives number of permutations of [n] starting with 1 and having no 3-sequences.
a(n) is also the number of permutations of length n-1 without consecutive fixed points (cf. A180187). - David Scambler, Mar 27 2011

Examples

			For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - From N. J. A. Sloane, Sep 15 2012 [broken link]

Crossrefs

Cf. A000166, A180186, - Emeric Deutsch, Sep 07 2010
A column of A216718. - N. J. A. Sloane, Sep 15 2012

Programs

  • Maple
    d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-k, k)*d[n-k-1], k = 0 .. floor((1/2)*n)) end proc: seq(a(n), n = 3 .. 23); # Emeric Deutsch, Sep 07 2010
  • Mathematica
    a[n_] := Sum[Binomial[n-k, k] Subfactorial[n-k-1], {k, 0, n/2}];
    a /@ Range[3, 21] (* Jean-François Alcover, Oct 29 2019 *)

Formula

Let b(n) be the sequence A002628. Then for n > 5, this sequence satisfies a(n) = b(n-1) - b(n-3) + a(n-3).
a(n) = Sum_{k=0..n/2} binomial(n-k,k)*d(n-k-1), where d(j)=A000166(j) are the derangement numbers. - Emeric Deutsch, Sep 07 2010

Extensions

More terms from Emeric Deutsch, Sep 07 2010
Edited by N. J. A. Sloane, Apr 04 2011

A165962 Number of circular permutations of length n without modular 3-sequences.

Original entry on oeis.org

1, 5, 18, 95, 600, 4307, 35168, 321609, 3257109, 36199762, 438126986, 5736774126, 80808984725, 1218563180295, 19587031966352, 334329804347219, 6039535339644630, 115118210694558105, 2308967760171049528, 48613722701436777455, 1072008447320752890459
Offset: 3

Views

Author

Isaac Lambert, Oct 01 2009

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n. Modular 3-sequences are of the following form: i,i+1,i+2, where arithmetic is modulo n.

Examples

			For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - N. J. A. Sloane, Sep 15 2012

Crossrefs

First column of A216722. Cf. A216723. - N. J. A. Sloane, Sep 15 2012

Programs

  • Mathematica
    f[i_,n_,k_]:=If[i==0&&k==0,1,If[i==n&&n==k,1,Binomial[k-1,k-i]*Binomial[n-k-1,k-i-1]+2*Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i-1]+Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i]]];
    w1[i_,n_,k_]:=If[n-2k+i<0,0,If[n-2k+i==0,1,(n-2k+i-1)!]];
    a[n_,k_]:=Sum[f[i,n,k]*w1[i,n,k],{i,0,k}];
    A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n,k],{k,1,n}];
    Table[A165962[n],{n,3,23}] (* David Scambler, Sep 18 2012 *)

Formula

This sequence can be related to A165961 by the use of auxiliary sequences (and the auxiliary sequences can themselves be calculated by recurrence relations).

A002628 Number of permutations of length n without 3-sequences.

Original entry on oeis.org

1, 1, 2, 5, 21, 106, 643, 4547, 36696, 332769, 3349507, 37054436, 446867351, 5834728509, 82003113550, 1234297698757, 19809901558841, 337707109446702, 6094059760690035, 116052543892621951, 2325905946434516516, 48937614361477154273, 1078523843237914046247
Offset: 0

Views

Author

Keywords

Comments

a(n) = sum of row n of A180185. - Emeric Deutsch, Sep 06 2010

Examples

			a(4) = 21 because only 1234, 2341, and 4123 contain 3-sequences. - _Emeric Deutsch_, Sep 06 2010
		

References

  • Jackson, D. M.; Reilly, J. W. Permutations with a prescribed number of p-runs. Ars Combinatoria 1 (1976), number 1, 297-305.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A047921.
Cf. A165960, A165961, A165962. - Isaac Lambert, Oct 07 2009
Cf. A000166, A180185. - Emeric Deutsch, Sep 06 2010

Programs

  • Maple
    seq(coeff(convert(series(add(m!*((t-t^3)/(1-t^3))^m,m=0..50),t,50), polynom), t,n),n=0..25); # Pab Ter, Nov 06 2005
    d[-1]:= 0: for n from 0 to 51 do d[n] := n*d[n-1]+(-1)^n end do: a:= proc(n) add(binomial(n-k, k)*(d[n-k]+d[n-k-1]), k = 0..floor((1/2)*n)) end proc: seq(a(n), n = 0..25); # Emeric Deutsch, Sep 06 2010
    # third Maple program:
    a:= proc(n) option remember; `if`(n<5,
          [1$2, 2, 5, 21][n+1], (n-3)*a(n-1)+(3*n-6)*a(n-2)+
          (4*n-12)*a(n-3)+(3*n-12)*a(n-4)+(n-5)*a(n-5))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 21 2019
  • Mathematica
    d[0] = 1; d[n_] := d[n] = n d[n - 1] + (-1)^n;
    T[n_, k_] := If[n == 0 && k == 0, 1, If[k <= n/2, Binomial[n - k, k] d[n + 1 - k]/(n - k), 0]];
    a[n_] := Sum[T[n, k], {k, 0, Quotient[n, 2]}];
    a /@ Range[0, 25] (* Jean-François Alcover, May 23 2020 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*(d(n-k) + d(n-k-1)) for n>0, where d(j) = A000166(j) are the derangement numbers. - Emeric Deutsch, Sep 06 2010

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 06 2005
a(0)=1 prepended by Alois P. Heinz, Jul 21 2019

A174073 Number of permutations of length n without modular consecutive triples i,i+2,i+4.

Original entry on oeis.org

1, 1, 2, 3, 24, 100, 594, 4389, 35744, 325395, 3288600, 36489992, 441091944, 5770007009, 81213883898, 1223895060315, 19662509172096, 335472890422812, 6057979283966814, 115434096553014565, 2314691409661484600, 48723117262650147387, 1074208020519754180896, 24755214452825129257168
Offset: 0

Views

Author

Isaac Lambert, Mar 06 2010

Keywords

Examples

			For example, a(5) does not count the permutation (0,4,1,3,2) since 4,1,3 is an arithmetic progression of 2 mod(5).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Column k=0 of A216724.

Extensions

a(11)-a(17) from Alois P. Heinz, Apr 13 2021
Terms a(18) onward from Max Alekseyev, Feb 04 2024
Showing 1-4 of 4 results.