A165968 Number of pairings disjoint to a given pairing, and containing a given pair not in the given pairing.
0, 1, 2, 10, 68, 604, 6584, 85048, 1269680, 21505552, 407414816, 8535396256, 195927013952, 4890027052480, 131842951699328, 3818743350945664, 118253903175951104, 3898687202158805248, 136339489775029813760, 5040776996774472673792
Offset: 1
Keywords
Examples
a(1) = 0 trivially. a(2) = 1 since there is a unique pairing disjoint to the canonical pairing, 01 23, and containing any of the 4 pairs not in the canonical pairing. a(3) = 2 since there are 2 pairings disjoint to the canonical pairing, 01 23 45, and containing the pair 02, not in the canonical pairing: 02 14 35 and 02 15 34.
References
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 3
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..405
- Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016).
- Marilena Barnabei, Niccolò Castronuovo, and Matteo Silimbani, Hertzsprung patterns on involutions, arXiv:2412.03449 [math.CO], 2024. See p. 10.
- Célia Biane, Greg Hampikian, Sergey Kirgizov, and Khaydar Nurligareev, Endhered patterns in matchings and RNA, arXiv:2404.18802 [math.CO], 2024. See pp. 8-9.
Programs
-
Maple
a:= n-> add((-1)^(n-k-1)*binomial(n-1,k)*(2*(k+1))!/(2^(k+1)*(k+1)!), k=0..n-1): seq(a(n), n=0..20);
-
Mathematica
a[n_] := Sum[(-1)^(n-k-2)* Binomial[n-2, k]*(2*(k+1))!/(2^(k+1)*(k+1)!) , {k, 0, n-2}]; a /@ Range[20] (* Jean-François Alcover, Jul 11 2011, after Maple *) CoefficientList[Series[-1+1/(E^x*Sqrt[1-2*x]) + Sqrt[2]*DawsonF[1/Sqrt[2]] + Sqrt[-Pi/(2*E)]*Erf[Sqrt[-1/2+x]],{x,0,20}],x]*Range[0,20]! (* Vaclav Kotesovec, Feb 04 2014 *)
-
bc
define a(n) { auto sign, i,s; s=0; sign = 1; for ( i=0 ; i<=n-1 ; i++ ) { s = s + sign * ffac(n-1-i) * c( n-2, i ); sign = sign * -1; } return s; } /* returns (2n-1)!! */ define ffac( n ) { if ( n <= 1 ) return 1; return (2*n-1)* ffac(n-1); } /* returns combinations of n things taken i at a time */ define c(n,i) { auto j,s; s=1; if ( n < 0 ) return 0; for ( j=0 ; j
Formula
a(n) = (2n-3)!! - C(n-2,1) * (2n-5)!! + ... +/- C(n-2,n-1)*3!! -/+ 1.
a(n) = (2*n-4)*a(n-1) +(2*n-6)*a(n-2) for n>2. - Gary Detlefs, Jul 11 2010
G.f.: x/(1-2x/(1-3x/(1+x-4x/(1-5x/(1+x-6x/(1-7x/(1+x-8x/(1-... (continued fraction). - Paul Barry, Jan 26 2011
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*C(n-1,k)*(2*(k+1))!/(2^(k+1)*(k+1)!). - Paul Barry, Jan 26 2011
Conjecture: a(n) +2*(-n+1)*a(n-1) +2*(-n+2)*a(n-2)=0. - R. J. Mathar, Nov 15 2012
G.f.: x/G(0) where G(k) = 1 - 2*x*(2*k+1) - x^2*(2*k+2)*(2*k+3)/G(k+1) (continued fraction). - Sergei N. Gladkovskii, Jan 13 2013
G.f.: Q(0)-1, where Q(k) = 1 - x*(k+1)/( x*(k+1) - (1 +x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
a(n) ~ 2^(n-1/2) * n^(n-1) / exp(n+1/2). - Vaclav Kotesovec, Feb 04 2014
a(n) = A053871(n)/(2n-2) for n>1.
a(n) * (2n-2) satisfies the recurrence of A053871, so Detlef's conjecture was correct. And if we rewrite Mathar's conjecture as b(n) = 2*(n-1)*b(n-1) +2*(n-2)*b(n-2) it becomes quite clear that Mathar's b(n) = a(n-1). - Sergey Kirgizov, Jun 03 2022
Comments