cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165983 Period 16: repeat 1,1,1,2,1,1,1,2,1,1,1,4,1,1,1,4.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Paul Curtz, Oct 03 2009

Keywords

Comments

The numerator of the reduced fraction A061037(n+3)/A061041(2n+6).

Crossrefs

Cf. A064038.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(( -1-x-x^2-2*x^3-x^8-x^9-x^10-4*x^11 )/((x-1)*(1+x)*(1+x^2)*(x^8+1)))); // G. C. Greubel, Sep 20 2018
  • Mathematica
    LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1}, {1, 1, 1, 2,  1, 1, 1, 2, 1, 1, 1, 4}, 50] (* G. C. Greubel, Apr 20 2016 *)
  • PARI
    x='x+O('x^50); Vec(( -1-x-x^2-2*x^3-x^8-x^9-x^10-4*x^11 )/((x-1)*(1+x)*(1+x^2)*(x^8+1))) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = a(n-4) - a(n-8) + a(n-12). - R. J. Mathar, Dec 17 2010
G.f.: ( -1 - x - x^2 - 2*x^3 - x^8 - x^9 - x^10 - 4*x^11 ) / ( (x-1)*(1+x)*(1+x^2)*(x^8+1) ). - R. J. Mathar, Dec 17 2010
a(4n) = a(4n+1) = a(4n+2) = 1. a(4n+3) = A165207(n).