cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166004 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648426, 8589706234144560, 240511774555729782, 6734329687551532752, 188561231251193685024, 5279714475026444683776
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648426];; for n in [11..30] do a[n]:=27*Sum([1..9], j-> a[n-j]) - 378*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Oct 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11) )); // G. C. Greubel, Oct 25 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Oct 25 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 21 2016 *)
    coxG[{10, 378, -27}] (* The coxG program is at A169452 *) (* G. C. Greubel, Oct 25 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11)) \\ G. C. Greubel, Oct 25 2019
    
  • Sage
    def A166004_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-28*t+405*t^10-378*t^11)).list()
    A166004_list(30) # G. C. Greubel, Oct 25 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^10 - 27*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1).