cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166068 a(n) = a(n-1)+ [least square > a(n-1)].

Original entry on oeis.org

1, 5, 14, 30, 66, 147, 316, 640, 1316, 2685, 5389, 10865, 21890, 43794, 87894, 176103, 352503, 705339, 1410939, 2822283, 5644683, 11290059, 22586380, 45177389, 90362673, 180726709, 361467845, 722962014, 1445926558, 2891903234
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 06 2009

Keywords

Comments

This sequence is the base sequence of the map: a(n) = a(n-1)+ [least square > a(n-1)] if a(n) is not divisible by Y, else a(n)=a(n-1)/Y, where Y is a positive integer.
Experimental results shows this map converges to a periodic orbit for all Y.
What is the number and length of periodic orbits for different Y?
What is the trajectory of some input under the map? If Y=2, the map converges to two periodic orbits, {1-5-14-7-16-8-4-2} and {11-27-63-127-271-560-280-140-70-35-71-152-76-38-19-44-22} whose length is L1=8, L2=17.
Two examples of trajectories for initial value 9 resp. 13 under the map for Y=2 are 9-25-61-125-269-558-279-568-284-142-{76-38-19-44-22-11-27-63-127-271-560-280-140-70-35-71-152} and 13-29-65-146-73-154-77-158-79-160-80-40-20-10-{5-14-7-16-8-4-2-1}.

Crossrefs

Programs

  • Maple
    A[1]:= 1:
    for n from 1 to 100 do
      A[n+1]:= A[n] + (floor(sqrt(A[n]))+1)^2
    od:
    seq(A[n],n=1..100); # Robert Israel, Oct 06 2014
  • PARI
    lista(n) = {na = 0; for (i=1, n, na += ceil(sqrt(na+1))^2; print1(na, ", "););} \\ Michel Marcus, Jun 02 2013

Extensions

Typo in data corrected by D. S. McNeil, Aug 17 2010