cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166136 a(n) = n*(n+3)/2 + 7.

Original entry on oeis.org

9, 12, 16, 21, 27, 34, 42, 51, 61, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 331, 357, 384, 412, 441, 471, 502, 534, 567, 601, 636, 672, 709, 747, 786, 826, 867, 909, 952, 996, 1041, 1087, 1134, 1182, 1231, 1281, 1332, 1384, 1437
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Comments

Numbers m >= 9 such that 8*m - 47 is a square. - Bruce J. Nicholson, Jul 25 2017

Crossrefs

Cf. A145018.

Programs

  • Magma
    I:=[9, 12, 16]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
    
  • Mathematica
    Table[n*(n+3)/2+7, {n, 1, 40}] (* or *) LinearRecurrence[{3,-3,1}, {9, 12, 16}, 40] (* Vincenzo Librandi, Mar 15 2012 *)
  • PARI
    for(n=1, 40, print1(n*(n+3)/2+7, ", ")); \\ Vincenzo Librandi, Mar 15 2012

Formula

a(n) = a(n-1) + n = 3*a(n-1) - 3*a(n-2) + a(n-3) = A145018(n+2) + 2.
G.f.: -x*(9 - 15*x + 7*x^2)/(x-1)^3.
E.g.f.: (1/2)*(14 + 4*x + x^2)*exp(x) - 7. - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = -13/42 + 2*Pi*tanh(sqrt(47)*Pi/2)/sqrt(47). - Amiram Eldar, Dec 13 2022

Extensions

Definition replaced by polynomial from R. J. Mathar, Oct 12 2009