A166145 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746825645, 72253221392051700, 2456609527329070575, 83524723929165033900, 2839840613590816720500, 96554580862060757805600
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (33, 33, 33, 33, 33, 33, 33, 33, 33, -561).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-34*t+594*t^10-561*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-34*t+594*t^10-561*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 27 2016 *) coxG[{561, 10, -33}] (* The coxG program is at A169452 *) (* G. C. Greubel, Mar 11 2020 *)
-
Sage
def A166145_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-34*t+594*t^10-561*t^11) ).list() A166145_list(30) # G. C. Greubel, Mar 11 2020
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).
Comments