cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166148 a(n) = (9*n^2 + 9*n - 16)/2.

Original entry on oeis.org

1, 19, 46, 82, 127, 181, 244, 316, 397, 487, 586, 694, 811, 937, 1072, 1216, 1369, 1531, 1702, 1882, 2071, 2269, 2476, 2692, 2917, 3151, 3394, 3646, 3907, 4177, 4456, 4744, 5041, 5347, 5662, 5986, 6319, 6661, 7012, 7372, 7741, 8119, 8506, 8902, 9307, 9721, 10144
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Programs

  • Magma
    I:=[1, 19, 46]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
  • Mathematica
    CoefficientList[Series[(1+16x-8x^2)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 19, 46}, 50] (* Vincenzo Librandi, Mar 15 2012 *)
  • PARI
    a(n)=9*binomial(n+1,2)-8 \\ Charles R Greathouse IV, Jan 11 2012
    

Formula

a(n) = a(n-1) + 9*n with n > 1, a(1)=1.
From Vincenzo Librandi, Mar 15 2012: (Start)
G.f.: x*(1+16*x-8*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: (1/2)*(9*x^2 + 18*x - 16)*exp(x). - G. C. Greubel, May 01 2016
Sum_{n>=1} 1/a(n) = 1/8 + (2*Pi/(3*sqrt(73)))*tan(sqrt(73)*Pi/6). - Amiram Eldar, Feb 20 2023

Extensions

New name from Charles R Greathouse IV, Jan 11 2012