cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166151 a(n) = (5*n^2 + 5*n - 6)/2.

Original entry on oeis.org

2, 12, 27, 47, 72, 102, 137, 177, 222, 272, 327, 387, 452, 522, 597, 677, 762, 852, 947, 1047, 1152, 1262, 1377, 1497, 1622, 1752, 1887, 2027, 2172, 2322, 2477, 2637, 2802, 2972, 3147, 3327, 3512, 3702, 3897, 4097, 4302, 4512, 4727, 4947, 5172, 5402, 5637
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Programs

  • Magma
    [(5*n^2 + 5*n - 6)/2: n in [1..50]]; // Vincenzo Librandi, Sep 13 2013
    
  • Mathematica
    Table[(5 n^2 + 5 n - 6)/2, {n, 50}] (* or *) CoefficientList[Series[(- 2 - 6 x + 3 x^2)/(x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 13 2013 *)
    LinearRecurrence[{3,-3,1},{2,12,27}, 50] (* G. C. Greubel, May 01 2016 *)
  • PARI
    a(n)=(5*n^2+5*n-6)/2 \\ Charles R Greathouse IV, May 02 2016

Formula

From R. J. Mathar, Oct 14 2009: (Start)
a(n) = 5*n*(n+1)/2 - 3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-2-6*x+3*x^2)/(x-1)^3. (End)
E.g.f.: (1/2)*(5*x^2 + 10*x - 6)*exp(x) + 6. - G. C. Greubel, May 01 2016
Sum_{n>=1} 1/a(n) = 1/3 + (2*Pi/sqrt(145))*tan(sqrt(29/5)*Pi/2). - Amiram Eldar, Feb 20 2023