A166167 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396730726, 135277862282282160, 4870003042161295290, 175320109517775581520, 6311523942638803173600
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (35,35,35,35,35,35,35,35,35,-630).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-36*t+665*t^10-630*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-36*t+665*t^10-630*t^11), {t,0,30}], t] (* G. C. Greubel, May 06 2016 *) coxG[{630, 10, -35}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 11 2020 *)
-
Sage
def A166167_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-36*t+665*t^10-630*t^11) ).list() A166167_list(30) # G. C. Greubel, Mar 11 2020
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).
Comments