A166170 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212223, 182726206151826240, 6760869627616609176, 250152176221778956464, 9255630520204504816392
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (36,36,36,36,36,36,36,36,36,-666).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-37*t+702*t^10-666*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-37*t+702*t^10-666*t^11), {t,0,30}], t] (* G. C. Greubel, May 06 2016 *) coxG[{666, 10, -36}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 11 2020 *)
-
Sage
def A166170_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-37*t+702*t^10-666*t^11) ).list() A166170_list(30) # G. C. Greubel, Mar 11 2020
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
Comments