cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166171 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949250331, 244850262071484420, 9304309958715338697, 353563778431142238492, 13435423580381861046924
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-38*t+740*t^10-703*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-38*t+740*t^10-703*t^11), {t,0,30}], t] (* G. C. Greubel, May 06 2016 *)
    coxG[{703, 10, -37}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 11 2020 *)
  • Sage
    def A166171_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^10)/(1-38*t+740*t^10-703*t^11) ).list()
    A166171_list(30) # G. C. Greubel, Aug 10 2019

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^10 - 37*t^9 - 37*t^8 - 37*t^7 - 37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).