A166226 Bell number n modulo n.
0, 0, 2, 3, 2, 5, 2, 4, 6, 5, 2, 1, 2, 12, 5, 3, 2, 13, 2, 12, 15, 5, 2, 9, 3, 18, 10, 3, 2, 27, 2, 12, 4, 5, 0, 1, 2, 24, 28, 27, 2, 23, 2, 8, 5, 5, 2, 33, 24, 20, 49, 39, 2, 5, 27, 28, 34, 5, 2, 57, 2, 36, 6, 51, 47, 19, 2, 52, 15, 25, 2, 49, 2, 42, 22, 71, 59, 19, 2, 44, 23, 5, 2, 65, 84
Offset: 1
Keywords
Examples
a(3)=a(5)=a(7)=a(11)=2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Greg Hurst, Andrew Schultz, An elementary (number theory) proof of Touchard's congruence, arXiv:0906.0696 [math.CO], (2009)
Crossrefs
See the Bell numbers sequence A000110.
Programs
-
Magma
[Bell(n) mod n: n in [1..100]]; // Vincenzo Librandi, Feb 03 2016
-
Maple
seq(combinat:-bell(n) mod n, n=1..100); # Robert Israel, Feb 03 2016
-
Mathematica
Array[n \[Function] Mod[BellB[n], n], 1000] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *) Table[Mod[BellB[n], n], {n, 1, 100}] (* G. C. Greubel, Feb 02 2016 *)
Formula
a(n) = A000110(n) mod n.
a(p^m) = m+1 (mod p) when p is prime and m >= 1 (see Lemma 3.1 in the Hurst/Schultz reference). - Joerg Arndt, Jun 01 2016
Extensions
More terms from R. J. Mathar and J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
Comments