cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166226 Bell number n modulo n.

Original entry on oeis.org

0, 0, 2, 3, 2, 5, 2, 4, 6, 5, 2, 1, 2, 12, 5, 3, 2, 13, 2, 12, 15, 5, 2, 9, 3, 18, 10, 3, 2, 27, 2, 12, 4, 5, 0, 1, 2, 24, 28, 27, 2, 23, 2, 8, 5, 5, 2, 33, 24, 20, 49, 39, 2, 5, 27, 28, 34, 5, 2, 57, 2, 36, 6, 51, 47, 19, 2, 52, 15, 25, 2, 49, 2, 42, 22, 71, 59, 19, 2, 44, 23, 5, 2, 65, 84
Offset: 1

Views

Author

Thierry Banel (tbanel(AT)gmail.com), Oct 09 2009

Keywords

Comments

a(n) = 2 (mod n) when n is prime.

Examples

			a(3)=a(5)=a(7)=a(11)=2.
		

Crossrefs

See the Bell numbers sequence A000110.

Programs

  • Magma
    [Bell(n) mod n: n in [1..100]]; // Vincenzo Librandi, Feb 03 2016
  • Maple
    seq(combinat:-bell(n) mod n, n=1..100); # Robert Israel, Feb 03 2016
  • Mathematica
    Array[n \[Function] Mod[BellB[n], n], 1000] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)
    Table[Mod[BellB[n], n], {n, 1, 100}] (* G. C. Greubel, Feb 02 2016 *)

Formula

a(n) = A000110(n) mod n.
a(p^m) = m+1 (mod p) when p is prime and m >= 1 (see Lemma 3.1 in the Hurst/Schultz reference). - Joerg Arndt, Jun 01 2016

Extensions

More terms from R. J. Mathar and J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010