cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166232 a(n) = A166231(n)/4^n.

Original entry on oeis.org

1, 1, 3, 20, 272, 7424, 405504, 44302336, 9680453632, 4230542786560, 3697657604210688, 6463791365183504384, 22598414411798807576576, 158015104883301198495481856, 2209780998563745292895322636288
Offset: 0

Views

Author

Paul Barry, Oct 09 2009

Keywords

Comments

a(n+1) is the Hankel transform of A068764.

Crossrefs

Programs

  • Mathematica
    Table[2^(Binomial[n, 2])*Sum[Binomial[n, 2 k]*2^(-k), {k, 0, Floor[n/2]}], {n, 0, 25}] (* G. C. Greubel, May 07 2016 *)

Formula

a(n) = 2^C(n,2)*Sum_{k=0..floor(n/2)} C(n,2k)*2^(-k).
a(n) = A166231(n)/4^n.

A166229 Expansion of (1-2x-sqrt(1-8x+8x^2))/(2x).

Original entry on oeis.org

1, 2, 8, 36, 176, 912, 4928, 27472, 156864, 912832, 5394176, 32282240, 195264000, 1191825920, 7331457024, 45406194944, 282896763904, 1771868302336, 11150040870912, 70461597988864, 446971590516736, 2845144452292608
Offset: 0

Views

Author

Paul Barry, Oct 09 2009

Keywords

Comments

Binomial transform of A166228. Hankel transform is A166231.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x-Sqrt[1-8*x+8*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

a(n) = 0^n + Sum_{k = 0..n} C(n-1,k-1)*A006318(k). - Paul Barry, Nov 04 2009
G.f.: 1/(1-2x/(1-x-x/(1-2x/(1-x-x/(1-2x/(1-x-x/(1-... (continued fraction). - Paul Barry, Dec 10 2009
Recurrence: (n+1)*a(n) = 4*(2*n-1)*a(n-1) - 8*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(1+sqrt(2))*(4+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
From Peter Bala, May 01 2024: (Start)
O.g.f.: A(x) = x*S(x/(1 - x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. for the large Schröder numbers A006318.
a(n) = A174347(n+1) - A174347(n).
The g.f. satisfies x^2*A(x)^2 - x*(1 - 2*x)*A(x) + x*(1 - x) = 0.
A(x) = (1 - x)/(1 - 2*x - x*(1 - x)/(1 - 2*x - x*(1 - x)/(1 - 2*x - ...))). (End)

A166228 Alternating sum of large Schroeder numbers.

Original entry on oeis.org

1, 1, 5, 17, 73, 321, 1485, 7073, 34513, 171585, 866133, 4427313, 22870425, 119208321, 626178717, 3311424321, 17615732385, 94202293633, 506116560293, 2730607756881, 14788011564009, 80361643637953, 438070231780973
Offset: 0

Views

Author

Paul Barry, Oct 09 2009

Keywords

Comments

Hankel transform is A166231. Binomial transform is A166229.

Programs

  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

G.f.: (1-x-sqrt(1-6x+x^2))/(2x(1+x));
a(n) = Sum{k=0..n} (-1)^k*A006318(n-k) = Sum_{k=0..n} (-1)^(n-k)*A006318(k).
Conjecture: (n+1)*a(n) +(4-5n)*a(n-1) +(1-5n)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
Showing 1-3 of 3 results.