Original entry on oeis.org
1, 1, 3, 20, 272, 7424, 405504, 44302336, 9680453632, 4230542786560, 3697657604210688, 6463791365183504384, 22598414411798807576576, 158015104883301198495481856, 2209780998563745292895322636288
Offset: 0
-
Table[2^(Binomial[n, 2])*Sum[Binomial[n, 2 k]*2^(-k), {k, 0, Floor[n/2]}], {n, 0, 25}] (* G. C. Greubel, May 07 2016 *)
A166229
Expansion of (1-2x-sqrt(1-8x+8x^2))/(2x).
Original entry on oeis.org
1, 2, 8, 36, 176, 912, 4928, 27472, 156864, 912832, 5394176, 32282240, 195264000, 1191825920, 7331457024, 45406194944, 282896763904, 1771868302336, 11150040870912, 70461597988864, 446971590516736, 2845144452292608
Offset: 0
-
CoefficientList[Series[(1-2*x-Sqrt[1-8*x+8*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
A166228
Alternating sum of large Schroeder numbers.
Original entry on oeis.org
1, 1, 5, 17, 73, 321, 1485, 7073, 34513, 171585, 866133, 4427313, 22870425, 119208321, 626178717, 3311424321, 17615732385, 94202293633, 506116560293, 2730607756881, 14788011564009, 80361643637953, 438070231780973
Offset: 0
-
CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
Showing 1-3 of 3 results.
Comments