cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166234 The inverse of the constant 1 function under the exponential convolution (also called the exponential Möbius function).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 0, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 0, 0, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1
Offset: 1

Views

Author

Laszlo Toth, Oct 09 2009

Keywords

Crossrefs

Cf. A008683, A049419, A051377, A124010, A209802 (partial sums).

Programs

  • Haskell
    a166234 = product . map (a008683 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A166234 := proc(n)
        local a,p;
        a := 1;
        if n =1 then
            ;
        else
            for p in ifactors(n)[2] do
                        a := a*numtheory[mobius](op(2,p)) ;
            end do:
        end if;
        a ;
    end proc:# R. J. Mathar, Nov 30 2016
  • Mathematica
    a[n_] := Times @@ MoebiusMu /@ FactorInteger[n][[All, 2]];
    Array[a, 100] (* Jean-François Alcover, Nov 16 2017 *)
  • PARI
    a(n)=factorback(apply(moebius, factor(n)[,2])) \\ Charles R Greathouse IV, Sep 02 2015

Formula

Multiplicative, a(p^e) = mu(e) for any prime power p^e (e>=1), where mu is the Möbius function A008683.
a(A130897(n)) = 0; a(A209061(n)) <> 0. - Reinhard Zumkeller, Mar 13 2012
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (mu(k) - mu(k-1))/p^k) = 0.3609447238... (Tóth, 2007). - Amiram Eldar, Nov 08 2020