A166237 Differences between consecutive products of two distinct primes: a(n) = A006881(n+1) - A006881(n).
4, 4, 1, 6, 1, 4, 7, 1, 1, 3, 1, 7, 5, 4, 2, 1, 4, 3, 4, 5, 3, 5, 3, 1, 1, 4, 2, 1, 1, 11, 5, 4, 3, 1, 3, 1, 6, 4, 1, 7, 1, 1, 2, 1, 9, 3, 1, 2, 5, 11, 1, 5, 2, 2, 7, 7, 1, 1, 2, 1, 3, 4, 1, 1, 2, 1, 1, 2, 5, 9, 2, 10, 2, 4, 1, 5, 3, 3, 2, 7, 4, 9, 4, 4, 3, 1, 2, 1, 1, 2, 4, 5, 5, 2, 2, 3, 1, 2, 5, 1, 4, 2, 5, 9, 3
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- D. A. Goldston, S. W. Graham, J. Pintz and C. Y. Yıldırım, Small gaps between primes and almost primes, arXiv:math/0506067 [math.NT], 2005; Proceedings of the London Mathematical Society 98:3 (May 2009), pp. 741-774.
- Yang Liu, Peter S. Park, and Zhuo Qun Song, Bounded gaps between products of distinct primes, arXiv:1607.03887 [math.NT], 2016-2017; Research in Number Theory 3:26 (2017).
- Keiju Sono, Small gaps between the set of products of at most two primes, arXiv:1605.02920 [math.NT], 2016-2018; Journal of the Mathematical Society of Japan 72:1 (2020), pp. 81-118.
Crossrefs
Programs
-
Magma
T:=[ n: n in [1..360] | #PrimeDivisors(n) eq 2 and &*[ d[2]: d in Factorization(n) ] eq 1 ]; [ T[j+1]-T[j]: j in [1..#T-1] ]; // Klaus Brockhaus, Oct 13 2009
-
Mathematica
f[n_]:=Last/@FactorInteger[n]=={1,1}; a=6;lst={};Do[If[f[n],AppendTo[lst,n-a];a=n],{n,9,6!}];lst
-
PARI
{m=106; v=vector(m); n=0; c=0; while(c
Klaus Brockhaus, Oct 13 2009
Extensions
Edited by Klaus Brockhaus, Oct 13 2009
Added formula to clarify the definition. - N. J. A. Sloane, Jul 19 2022
Comments