cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A354831 Primes of the form 3^k + 5^k + 7^k + 11^k + 13^k.

Original entry on oeis.org

5, 373, 46309, 6732373, 26450599458469, 4317810550653973, 15647143198792684919908583741989, 6864681654384231304317569259724531213945845885866391974437116993829, 5599548608682504162062596274137068329320798013420534505888549721133699842789
Offset: 1

Views

Author

Hemjyoti Nath, Jun 07 2022

Keywords

Examples

			3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373, which is a prime.
3^4 + 5^4 + 7^4 + 11^4 + 13^4 = 46309, which is a prime.
		

Crossrefs

A352393 gives the corresponding exponents.
Cf. A166241.

Programs

  • Mathematica
    Select[Table[3^n + 5^n + 7^n + 11^n + 13^n,{n,0,1000}],PrimeQ]
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (p for p in (3**k + 5**k + 7**k + 11**k + 13**k for k in count(0)) if isprime(p))
    print(list(islice(agen(), 9))) # Michael S. Branicky, Jun 07 2022
Showing 1-1 of 1 results.