cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hemjyoti Nath

Hemjyoti Nath's wiki page.

Hemjyoti Nath has authored 7 sequences.

A356690 Product of the prime numbers that are between 10*n and 10*(n+1).

Original entry on oeis.org

210, 46189, 667, 1147, 82861, 3127, 4087, 409457, 7387, 97, 121330189, 113, 127, 2494633, 149, 23707, 27221, 30967, 181, 1445140189, 1, 211, 11592209, 55687, 241, 64507, 70747, 75067, 79523, 293, 307, 30857731, 1, 111547, 121103, 126727, 367, 141367, 148987, 397, 164009, 419, 421
Offset: 0

Author

Hemjyoti Nath, Aug 23 2022

Keywords

Comments

a(n) is prime iff n is in A216292. - Amiram Eldar, Aug 23 2022
For almost all n (in the sense of natural density), a(n) = 1. - Charles R Greathouse IV, Sep 30 2022

Examples

			210 = 2*3*5*7, 46189 = 11*13*17*19, 667 = 23*29, 1147 = 31*37, 82861 = 41*43*47.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ Select[Range[10 n + 1, 10 n + 9], PrimeQ]; Array[a, 43, 0]
  • PARI
    a(n) = vecprod(select(isprime, [10*n..10*(n+1)])); \\ Michel Marcus, Aug 24 2022
    
  • Python
    from math import prod
    from sympy import primerange
    def a(n): return prod(primerange(10*n, 10*(n+1)))
    print([a(n) for n in range(43)]) # Michael S. Branicky, Aug 23 2022
    
  • Python
    from math import prod
    from sympy import isprime
    def A356690(n): return prod(m for i in (1,3,7,9) if isprime(m:=10*n+i)) if n else 210 # Chai Wah Wu, Sep 23 2022

Formula

Let m(n) = {isprime(10n-9) * (10n-9), isprime(10n-8) * (10n-8), isprime(10n-7) * (10n-7), isprime(10n-5) * (10n-5), isprime(10n-3) * (10n-3), isprime(10n-1) * (10n-1)}, where isprime = A010051; then a(n) = product of nonzero terms from m(n).
a(n) = 1 for n in A032352. - Michel Marcus, Aug 23 2022
a(n) = Product_{i=1+pi(10*n)..pi(10*(n+1))} prime(i). - Alois P. Heinz, Aug 23 2022

A354831 Primes of the form 3^k + 5^k + 7^k + 11^k + 13^k.

Original entry on oeis.org

5, 373, 46309, 6732373, 26450599458469, 4317810550653973, 15647143198792684919908583741989, 6864681654384231304317569259724531213945845885866391974437116993829, 5599548608682504162062596274137068329320798013420534505888549721133699842789
Offset: 1

Author

Hemjyoti Nath, Jun 07 2022

Keywords

Examples

			3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373, which is a prime.
3^4 + 5^4 + 7^4 + 11^4 + 13^4 = 46309, which is a prime.
		

Crossrefs

A352393 gives the corresponding exponents.
Cf. A166241.

Programs

  • Mathematica
    Select[Table[3^n + 5^n + 7^n + 11^n + 13^n,{n,0,1000}],PrimeQ]
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (p for p in (3**k + 5**k + 7**k + 11**k + 13**k for k in count(0)) if isprime(p))
    print(list(islice(agen(), 9))) # Michael S. Branicky, Jun 07 2022

A354829 Numbers k such that 2^k + 3^k + 6 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 15, 18, 23, 24, 33, 34, 35, 44, 63, 88, 89, 120, 220, 228, 229, 570, 1095, 1863, 2094, 2718, 3598, 4658, 6056, 8819, 9485, 11220, 23656, 28762, 35664, 36544, 39779, 46868, 50098, 58853
Offset: 1

Author

Hemjyoti Nath, Jun 07 2022

Keywords

Comments

a(34) > 17000.
a(36) > 30000. - Jon E. Schoenfield, Jun 14 2022

Examples

			For k=1 we obtain f(1) = 2^1 + 3^1 + 6 = 11 which is a prime.
		

Crossrefs

Cf. A353102.

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[2^# + 3^# + 6] &]
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (k for k in count(1) if isprime(2**k+3**k+6))
    print(list(islice(agen(), 24))) # Michael S. Branicky, Jun 07 2022

Extensions

a(34) from Jon E. Schoenfield, Jun 11 2022
a(35) from Jon E. Schoenfield, Jun 13 2022
a(36)-a(38) from Michael S. Branicky, Mar 14 2023
a(39)-a(41) from Michael S. Branicky, Jun 01 2024

A352393 Numbers k such that 3^k + 5^k + 7^k + 11^k + 13^k is prime.

Original entry on oeis.org

0, 2, 4, 6, 12, 14, 28, 60, 68, 2070, 7910, 10740
Offset: 1

Author

Hemjyoti Nath, Jun 07 2022

Keywords

Comments

Note that k must be even.
If it exists, a(13) > 31000. - Hugo Pfoertner, Jun 08 2022

Examples

			For k=2 we obtain f(2) = 3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373 which is a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1000], PrimeQ[3^# + 5^# + 7^# + 11^# +13^#] &]
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (k for k in count(0) if isprime(3**k + 5**k + 7**k + 11**k + 13**k))
    print(list(islice(agen(), 9))) # Michael S. Branicky, Jun 07 2022

Extensions

a(11)-a(12) from Hugo Pfoertner, Jun 07 2022

A353102 Primes of the form 2^k + 3^k + 6.

Original entry on oeis.org

11, 19, 41, 103, 281, 6823, 20201, 14381681, 387682639, 94151567441, 282446313703, 5559069156490121, 16677198879535759, 50031579458738081, 984770919775797277303, 1144561273440060866922804472241, 969773729787523912361831763509149540341223, 2909321189362571427600485469182379896242601
Offset: 1

Author

Hemjyoti Nath, Apr 23 2022

Keywords

Comments

Conjecture: There are infinitely many primes of the form 2^k + 3^k + 6.

Examples

			2^1 + 3^1 + 6 = 11, which is a prime.
2^2 + 3^2 + 6 = 19, which is a prime.
		

Crossrefs

Cf. A075996.

Programs

  • Mathematica
    Select[Table[2^n + 3^n + 6,{n,1,1000}],PrimeQ]

A352913 a(n) = largest prime of the form prime(n) + k! (k >= 0).

Original entry on oeis.org

3, 5, 29, 727, 3628811, 733, 39916817, 87178291219, 20922789888023, 2432902008176640029, 1124000727777607680031, 8683317618811886495518194401280000037, 15511210043330985984000041, 523022617466601111760007224100074291200000043, 2658271574788448768043625811014615890319638528000000047
Offset: 1

Author

Editors of OEIS, based on a suggestion from Hemjyoti Nath, Apr 16 2022

Keywords

Crossrefs

These are the final entries in the rows of the triangle in A352912. See also A082470.

Programs

  • Python
    from sympy import isprime, prime
    from itertools import count, islice
    def agen(): # generator of terms
        for n in count(1):
            pn, fk = prime(n), 1
            for k in range(1, pn+1):
                if isprime(pn + fk): yield pn + fk
                fk *= k
    print(list(islice(agen(), 51))) # Michael S. Branicky, Apr 16 2022

A352912 Irregular triangle read by rows: row n (n>=1) lists the primes of the form prime(n) + k! for k >= 0.

Original entry on oeis.org

3, 3, 5, 7, 11, 29, 13, 31, 127, 727, 13, 17, 131, 5051, 3628811, 19, 37, 733, 19, 23, 41, 137, 362897, 39916817, 43, 139, 739, 5059, 3628819, 39916819, 87178291219, 29, 47, 743, 40343, 362903, 20922789888023, 31, 53, 149, 39916829, 479001629, 2432902008176640029, 37, 151, 751, 40351, 362911, 39916831, 355687428096031, 51090942171709440031, 1124000727777607680031
Offset: 1

Author

Editors of OEIS, based on a suggestion from Hemjyoti Nath, Apr 16 2022

Keywords

Examples

			The initial rows, prefixed by prime(n), are:
[2]: 3, 3,
[3]: 5,
[5]: 7, 11, 29,
[7]: 13, 31, 127, 727,
[11]: 13, 17, 131, 5051, 3628811,
[13]: 19, 37, 733,
[17]: 19, 23, 41, 137, 362897, 39916817,
[19]: 43, 139, 739, 5059, 3628819, 39916819, 87178291219,
[23]: 29, 47, 743, 40343, 362903, 20922789888023,
[29]: 31, 53, 149, 39916829, 479001629, 2432902008176640029,
[31]: 37, 151, 751, 40351, 362911, 39916831, 355687428096031, 51090942171709440031, 1124000727777607680031,
[37]: 43, 61, 157, 757, 5077, 40357, 39916837, 6402373705728037, 2432902008176640037, 51090942171709440037, 8683317618811886495518194401280000037,
...
		

Crossrefs

Cf. A352913 (last term in each row), A082470 (lengths of rows).

Programs

  • PARI
    forprime(p=2,59,print1([p],": ");for(k=0,p,if(ispseudoprime(p+k!),print1(p+k!,", ")));print())
    
  • Python
    from sympy import isprime, prime
    from itertools import count, islice
    def agen(): # generator of terms
        for n in count(1):
            pn, fk = prime(n), 1
            for k in range(1, pn+1):
                if isprime(pn + fk): yield pn + fk
                fk *= k
    print(list(islice(agen(), 51))) # Michael S. Branicky, Apr 16 2022