A166258 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 45, 1980, 87120, 3833280, 168664320, 7421230080, 326534123520, 14367501434880, 632170063134720, 27815482777926690, 1223881242228730800, 53850774658062239550, 2369434084954654251600, 104255099738001078372000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, 43, 43, 43, 43, 43, 43, -946).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-44*t+989*t^10-946*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-44*t+989*t^10-946*t^11), {t,0,30}], t] (* G. C. Greubel, May 08 2016 *) coxG[{10, 946, -43}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 11 2020 *)
-
Sage
def A166258_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-44*t+989*t^10-946*t^11) ).list() A166258_list(30) # G. C. Greubel, Mar 11 2020
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
Comments