A166303 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558592715, 1566328930136625600, 70484801856146057160, 3171816083526478304400, 142731723758687281647000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (44, 44, 44, 44, 44, 44, 44, 44, 44, -990).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-45*t+1034*t^10-990*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-45*t+1034*t^10-990*t^11), {t,0,30}], t] (* G. C. Greubel, May 09 2016 *) coxG[{10, 990, -44}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 11 2020 *)
-
Sage
def A166303_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^10)/(1-45*t+1034*t^10-990*t^11)).list() A166303_list(30) # G. C. Greubel, Mar 11 2020
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).
Comments