cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166325 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895521225, 3989613314880480000, 195491052429140580000, 9579061569027744360000, 469374016882352414700000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-49*t+1224*t^10-1176*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 12 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-49*t+1224*t^10-1176*t^11), {t,0,30}], t] (* G. C. Greubel, May 09 2016 *)
    coxG[{10, 1176, -48}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    def A166325_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^10)/(1-49*t+1224*t^10-1176*t^11) ).list()
    A166325_list(30) # G. C. Greubel, Aug 10 2019

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).