cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A166357 Exponential Riordan array [1+x*arctanh(x), x].

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 8, 0, 12, 0, 1, 0, 40, 0, 20, 0, 1, 144, 0, 120, 0, 30, 0, 1, 0, 1008, 0, 280, 0, 42, 0, 1, 5760, 0, 4032, 0, 560, 0, 56, 0, 1, 0, 51840, 0, 12096, 0, 1008, 0, 72, 0, 1, 403200, 0, 259200, 0, 30240, 0, 1680, 0, 90, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 12 2009

Keywords

Comments

Row sums are A166358. Diagonal sums are A166359.

Examples

			Triangle begins
       1;
       0,     1;
       2,     0,      1;
       0,     6,      0,     1;
       8,     0,     12,     0,     1;
       0,    40,      0,    20,     0,    1;
     144,     0,    120,     0,    30,    0,    1;
       0,  1008,      0,   280,     0,   42,    0,  1;
    5760,     0,   4032,     0,   560,    0,   56,  0,  1;
       0, 51840,      0, 12096,     0, 1008,    0, 72,  0, 1;
  403200,     0, 259200,     0, 30240,    0, 1680,  0, 90, 0, 1;
		

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1 + # ArcTanh[#]&, #&, 11, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • PARI
    T(n,k)={binomial(n,k)*(n-k)!*polcoef(1 + x*atanh(x + O(x^max(1, n-k))), n-k)} \\ Andrew Howroyd, Aug 17 2018
    
  • PARI
    T(n,k)=if(k>=n, n==k, binomial(n, k)*if((n-k)%2, 0, (n-k-1)! + (n-k-2)!)) \\ Andrew Howroyd, Aug 17 2018

Formula

Number triangle T(n,k) = [k<=n]*A166356((n-k)/2)*C(n,k)*(1+(-1)^(n-k))/2.

A166359 Diagonal sums of the exponential Riordan array [1+x*arctanh(x), x], A166357.

Original entry on oeis.org

1, 3, 15, 197, 6909, 459383, 48252699, 7299708105, 1499523879481, 401147660278507, 135421121289695655, 56285769483090611085, 28237152577765405343285, 16821061018350834178553055
Offset: 0

Views

Author

Paul Barry, Oct 12 2009

Keywords

Comments

Aeration of this sequence gives the diagonal sums of A166357.

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[Binomial[n + k, 2*k] * ((2*k-1)! + (2*k-2)!), {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 17 2018 *)
  • PARI
    a(n)={1 + sum(k=1, n, binomial(n + k, 2*k) * ((2*k-1)! + (2*k-2)!))} \\ Andrew Howroyd, Aug 17 2018

Formula

a(n) = Sum_{k=0..n} C(n+k,2k)*A166356(k).
a(n) ~ sqrt(Pi) * 2^(2*n) * n^(2*n - 1/2) / exp(2*n). - Vaclav Kotesovec, Aug 17 2018

A296787 Expansion of e.g.f. exp(x*arctan(x)) (even powers only).

Original entry on oeis.org

1, 2, 4, 24, -496, 36000, -3753408, 556961664, -111591202560, 29054584410624, -9541382573767680, 3858875286730168320, -1884995591107521540096, 1094305223336273239449600, -744771228363250138965196800, 587358379156469629707528929280
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			exp(x*arctan(x)) = 1 + 2*x^2/2! + 4*x^4/4! + 24*x^6/6! - 496*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[x ArcTan[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 15; Table[(CoefficientList[Series[Exp[(I/2) x (Log[1 - I x] - Log[1 + I x])], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*arctan(x)).
a(n) ~ -(-1)^n * 2^(2*n-1) * n^(2*n-1) / exp(2*n). - Vaclav Kotesovec, Dec 21 2017

A296789 Expansion of e.g.f. exp(x*arctanh(x)) (even powers only).

Original entry on oeis.org

1, 2, 20, 504, 24464, 1959840, 234852672, 39370660224, 8799246209280, 2528787321598464, 908585701684024320, 399070678264750356480, 210373049449102957645824, 131083661069772517440921600, 95304505860052894815543705600, 79961055068441273887848131297280
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			exp(x*arctanh(x)) = 1 + 2*x^2/2! + 20*x^4/4! + 504*x^6/6! + 24464*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[x ArcTanh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 15; Table[(CoefficientList[Series[Exp[x (Log[1 + x] - Log[1 - x])/2], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*arctanh(x)).
a(n) ~ 2^(2*n + 2) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Dec 21 2017

A166358 Row sums of exponential Riordan array [1+x*arctanh(x), x], A166357.

Original entry on oeis.org

1, 1, 3, 7, 21, 61, 295, 1331, 10409, 65017, 694411, 5454879, 73145149, 689074101, 11090013103, 121652191051, 2282132463953, 28550033871857, 611369381873683, 8587415858721079, 206626962757626981, 3219065122124476717
Offset: 0

Views

Author

Paul Barry, Oct 12 2009

Keywords

Comments

Binomial transform of aeration of A166356.

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    nmax = 21; R = RiordanArray[1 + # ArcTanh[#]&, #&, nmax + 1, True];
    Total /@ R (* Jean-François Alcover, Jul 20 2019 *)

Formula

E.g.f.: exp(x)*(1+x*arctanh(x)).
a(n) = Sum_{k=0..n} C(n,k)*A166356(k/2)*(1+(-1)^k)/2.
a(n) ~ (exp(1) + (-1)^n*exp(-1)) * (n-1)! / 2. - Vaclav Kotesovec, Aug 17 2018
Showing 1-5 of 5 results.