cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166365 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263211, 2539579140, 15237474105, 91424840220, 548549014860, 3291293930400, 19747762629840, 118486570063680, 710919386089920, 4265516110786560
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^11)/(1-6*t+20*t^11-15*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-6*t+20*t^11-15*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
    coxG[{11, 15, -5}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 13 2020 *)
  • Sage
    def A166365_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^11)/(1-6*t+20*t^11-15*t^12) ).list()
    A166365_list(30) # G. C. Greubel, Aug 10 2019

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).