A166405 Sum of those positive i <= 2n+1, for which J(i,2n+1)=-1. Here J(i,k) is the Jacobi symbol.
0, 2, 5, 14, 0, 33, 39, 45, 68, 95, 63, 161, 0, 126, 203, 279, 165, 245, 333, 312, 410, 473, 270, 658, 0, 459, 689, 660, 513, 944, 915, 630, 780, 1139, 759, 1491, 1314, 775, 1155, 1738, 0, 1826, 1360, 1479, 1958, 1729, 1395, 2090, 2328, 1485, 2525, 2884
Offset: 0
Keywords
Examples
For n=5, we get odd number 11 (2*5+1), and J(i,11) = 1,-1,1,1,1,-1,-1,-1,1,-1,0 when i ranges from 1 to 11, J(i,11) obtaining value -1 when i=2, 6, 7, 8 and 10, thus a(5)=33.
Links
- A. Karttunen, Table of n, a(n) for n = 0..131071
Crossrefs
Programs
-
Mathematica
Table[Total@ Select[Range[2n + 1], JacobiSymbol[#, 2n + 1]==-1 &], {n, 0, 100}] (* Indranil Ghosh, Jun 12 2017 *)
-
Python
from sympy import jacobi_symbol as J def a(n): return sum(i for i in range(1, 2*n + 2) if J(i, 2*n + 1)==-1) # Indranil Ghosh, Jun 12 2017