A166417 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202499, 13439320932449412, 295665060513764865, 6504631331300138652, 143101889288543906028
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,21,-231).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^11)/(1-22*x+252*x^11-231*x^12) )); // G. C. Greubel, Jul 23 2024 -
Mathematica
With[{p=231, q=21}, CoefficientList[Series[(1+t)*(1-t^11)/(1- (q+1)*t + (p+q)*t^11 -p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 13 2016; Jul 23 2024 *) coxG[{11, 231, -21, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 23 2024 *) -
SageMath
def A166417_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^11)/(1-22*x+252*x^11-231*x^12) ).list() A166417_list(30) # G. C. Greubel, Jul 23 2024
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 21*Sum_{j=1..10} a(n-j) - 231*a(n-11).
G.f.: (1+x)*(1 - x^11)/(1 - 22*x + 252*x^11 - 231*x^12). (End)
Comments