A166419 Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785600, 2751882854400, 66045188505600, 1585084524134100, 38042028579211200, 913008685900896300, 21912208461617371200, 525893003078717548800
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (23,23,23,23,23,23,23,23,23,23,-276).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^11)/(1-24*x+299*x^11-276*x^12) )); // G. C. Greubel, Jul 23 2024 -
Mathematica
With[{p=276, q=23}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 13 2016; Jul 23 2024 *) coxG[{11, 276, -23, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 23 2024 *)
-
SageMath
def A166419_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^11)/(1-24*x+299*x^11-276*x^12) ).list() A166419_list(30) # G. C. Greubel, Jul 23 2024
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(276*t^11 - 23*t^10 - 23*t^9 - 23*t^8 - 23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 23*Sum_{j=1..10} a(n-j) - 276*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 24*x + 299*x^11 - 276*x^12). (End)
Comments