A166440 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136717715, 70484801856152250600, 3171816083526849182160, 142731723758708118929400
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (44,44,44,44,44,44,44,44,44,44,-990).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); f:= func< p,q,x | (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12) >; Coefficients(R!( f(990,44,x) )); // G. C. Greubel, Jul 26 2024 -
Mathematica
With[{p=990, q=44}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 14 2016; Jul 26 2024 *) coxG[{11, 990, -44, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 26 2024 *)
-
SageMath
def f(p,q,x): return (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12) def A166440_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(990,44,x) ).list() A166440_list(30) # G. C. Greubel, Jul 26 2024
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).
From G. C. Greubel, Jul 26 2024: (Start)
a(n) = 44*Sum_{j=1..10} a(n-j) - 990*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 45*x + 1034*x^11 - 990*x^12). (End)
Comments