A166482 a(n) = Sum_{k=0..n} binomial(n+k,2k)*Fibonacci(2k+1).
1, 3, 12, 51, 221, 965, 4227, 18540, 81363, 357145, 1567849, 6883059, 30218028, 132664227, 582428789, 2557009709, 11225925267, 49284687948, 216372426339, 949930508209, 4170438905425, 18309298027683, 80382521554380
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 5.
- Index entries for linear recurrences with constant coefficients, signature (7,-13,7,-1).
Crossrefs
Cf. A131322.
Programs
-
Mathematica
CoefficientList[Series[(1-4x+4x^2-x^3)/(1-7x+13x^2-7x^3+x^4), {x,0,30}],x] (* Harvey P. Dale, Mar 23 2011 *) LinearRecurrence[{7, -13, 7, -1}, {1, 3, 12, 51}, 50] (* G. C. Greubel, May 15 2016 *)
Formula
G.f.: (1 - 4x + 4x^2 - x^3)/(1 - 7x + 13x^2 - 7x^3 + x^4).
a(n) = Sum_{k=0..n} binomial(n+k,2k) * Sum_{j=0..k} binomial(k+j,2j).
a(n) ~ (1 + 1/sqrt(5) + 2*sqrt(31/290 + 13/(58*sqrt(5)))) * ((7 + sqrt(5) + sqrt(38 + 14*sqrt(5)))^n / 2^(2*n+2)). - Vaclav Kotesovec, Feb 22 2022
a(n) = A131322(2*n). - Nicolas Bělohoubek, Jan 21 2025
Comments