cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166500 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968735, 1464843600, 7324217640, 36621086400, 183105423000, 915527070000, 4577635125000, 22888174500000, 114440866875000, 572204306250000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    f:= func< p,q,x | (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13) >;
    Coefficients(R!( f(10,4,x) )); // G. C. Greubel, Aug 03 2024
    
  • Mathematica
    With[{p=10, q=4}, CoefficientList[Series[(1+t)*(1-t^12)/(1 - (q+1)*t + (p+q)*t^12 - p*t^13), {t,0,40}], t]] (* G. C. Greubel, May 15 2016; Aug 02 2024 *)
    coxG[{12, 10, -4, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 03 2024 *)
  • SageMath
    def f(p,q,x): return (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13)
    def A166500_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(10,4,x) ).list()
    A166500_list(30) # G. C. Greubel, Aug 03 2024

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
From G. C. Greubel, Aug 03 2024: (Start)
a(n) = 4*Sum_{j=1..11} a(n-j) - 10*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 5*x + 14*x^12 - 10*x^13). (End)