cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166523 a(n) = 8*n - a(n-1), with n>1, a(1)=1.

Original entry on oeis.org

1, 15, 9, 23, 17, 31, 25, 39, 33, 47, 41, 55, 49, 63, 57, 71, 65, 79, 73, 87, 81, 95, 89, 103, 97, 111, 105, 119, 113, 127, 121, 135, 129, 143, 137, 151, 145, 159, 153, 167, 161, 175, 169, 183, 177, 191, 185, 199, 193, 207, 201, 215, 209, 223, 217, 231, 225, 239, 233
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 8*n-Self(n-1): n in [1..70]]; // Vincenzo Librandi, Sep 13 2013
    
  • Mathematica
    CoefficientList[Series[(1 +14 x -7 x^2)/((1+x) (1-x)^2), {x,0,60}], x] (* Vincenzo Librandi, Sep 13 2013 *)
  • SageMath
    def A166523(n): return 4*n - 3 + 10*((n+1)%2)
    [A166523(n) for n in range(1,101)] # G. C. Greubel, Aug 03 2024

Formula

G.f.: x*(1+14*x-7*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Mar 08 2011
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: 5*exp(-x) + 2*(1 + 2*x)*exp(x) - 7.
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/7 + (1/8 + 1/(4*sqrt(2)))*Pi. - Amiram Eldar, Feb 24 2023
a(n) = 4*n + 2 + 5*(-1)^n. - G. C. Greubel, Aug 03 2024