cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166536 A product of consecutive doubled Fibonacci numbers.

Original entry on oeis.org

1, 3, 6, 16, 40, 105, 273, 715, 1870, 4896, 12816, 33553, 87841, 229971, 602070, 1576240, 4126648, 10803705, 28284465, 74049691, 193864606, 507544128, 1328767776, 3478759201, 9107509825, 23843770275, 62423800998, 163427632720
Offset: 0

Views

Author

Paul Barry, Oct 16 2009

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,3,6,16];; for n in [5..30] do a[n]:=3*a[n-1]-3*a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 09 2019
  • Magma
    /* From the sixth formula: */ F:=Fibonacci; [&+[F(i+1)*F(i-1): i in [0..n+1]]: n in [0..30]]; // Bruno Berselli, Feb 15 2017
    
  • Mathematica
    LinearRecurrence[{3, 0, -3, 1}, {1, 3, 6, 16}, 30] (* G. C. Greubel, May 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x^2+x^3)/(1-3*x+3*x^3-x^4)) \\ G. C. Greubel, Jan 09 2019
    
  • Sage
    ((1-3*x^2+x^3)/(1-3*x+3*x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 09 2019
    

Formula

G.f.: (1 - 3*x^2 + x^3)/(1 - 3*x + 3*x^3 - x^4).
a(n) = F(n+1)*F(n+2) + (1 - (-1)^n)/2, where F = A000045.
a(n) = (F(n+2)*(1 + (-1)^n)/2 + F(n)*(1 - (-1)^n)/2)*(F(n+3)*(1 - (-1)^n)/2 + F(n+1)*(1 + (-1)^n)/2).
a(n)*a(n+2) - a(n+1)^2 = (-1)^n*(F(2*n+4) - 1).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - G. C. Greubel, May 16 2016
a(n) = Sum_{i=0..n+1} F(i+1)*F(i-1), where F(-1) = 1. - Bruno Berselli, Feb 16 2017