A166541 Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411292, 618475290048, 4947802318116, 39582418526784, 316659348069120, 2533274783391744, 20266198257844224, 162129585988435968
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (7,7,7,7,7,7,7,7,7,7, 7,-28).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-8*x+35*x^12-28*x^13) )); // G. C. Greubel, Aug 23 2024 -
Mathematica
CoefficientList[Series[(1+t)*(1-t^12)/(1-8*t+35*t^12-28*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 16 2016; Aug 23 2024 *) coxG[{12,28,-7, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 23 2024 *)
-
SageMath
def A166541_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^12)/(1-8*x+35*x^12-28*x^13) ).list() A166541_list(30) # G. C. Greubel, Aug 23 2024
Formula
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
From G. C. Greubel, Aug 23 2024: (Start)
a(n) = 7*Sum_{j=1..11} a(n-j) - 28*a(n-13).
G.f.: (1+x)*(1-x^12)/(1 - 8*x + 35*x^12 - 28*x^13). (End)
Comments