cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166549 The number of halving steps of the Collatz 3x+1 map to reach 1 starting from 2n-1.

Original entry on oeis.org

0, 5, 4, 11, 13, 10, 7, 12, 9, 14, 6, 11, 16, 70, 13, 67, 18, 10, 15, 23, 69, 20, 12, 66, 17, 17, 9, 71, 22, 22, 14, 68, 19, 19, 11, 65, 73, 11, 16, 24, 16, 70, 8, 21, 21, 59, 13, 67, 75, 18, 18, 56, 26, 64, 72, 45, 10, 23, 15, 23, 61, 31, 69, 31, 77, 20, 20, 28, 58, 28, 12, 66, 74, 74, 17
Offset: 1

Views

Author

Jimin Park, Oct 16 2009

Keywords

Comments

A given term k appears A131450(k) times. - Flávio V. Fernandes, Mar 13 2022

Crossrefs

Programs

  • Maple
    A006370 := proc(n) if type(n,'even') then n/2; else 3*n+1 ; end if; end proc:
    A006577 := proc(n) a := 0 ; x := n ; while x > 1 do x := A006370(x) ; a := a+1 ; end do; a ; end proc:
    A006667 := proc(n) a := 0 ; x := n ; while x > 1 do if type(x,'even') then x := x/2 ; else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
    A075680 := proc(n) A006667(2*n-1) ; end proc:
    A166549 := proc(n) A006577(2*n-1)-A075680(n) ; end: seq(A166549(n),n=1..120) ; # R. J. Mathar, Oct 18 2009
    # second Maple program:
    b:= proc(n) option remember; `if`(n=1, 0,
          1+b(`if`(n::even, n/2, (3*n+1)/2)))
        end:
    a:= n-> b(2*n-1):
    seq(a(n), n=1..75);  # Alois P. Heinz, Mar 14 2022
  • Mathematica
    b[n_] := b[n] = If[n == 1, 0, 1 + b[If[EvenQ[n], n/2, (3n+1)/2]]];
    a[n_] := b[2n-1];
    Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Apr 22 2022, after Alois P. Heinz *)

Formula

a(n) = A006577(2n-1) - A075680(n).

Extensions

Edited and extended by R. J. Mathar, Oct 18 2009