cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159966 Lodumo_4 of A102370 (sloping binary numbers).

Original entry on oeis.org

0, 3, 2, 1, 4, 7, 6, 5, 8, 11, 10, 9, 12, 15, 14, 13, 16, 19, 18, 17, 20, 23, 22, 21, 24, 27, 26, 25, 28, 31, 30, 29, 32, 35, 34, 33, 36, 39, 38, 37, 40, 43, 42, 41, 44, 47, 46, 45, 48, 51, 50, 49, 52, 55, 54, 53, 56, 59, 58, 57, 60, 63, 62, 61, 64, 67, 66, 65, 68, 71, 70, 69, 72
Offset: 0

Views

Author

Philippe Deléham, Apr 28 2009

Keywords

Comments

A permutation of the nonnegative integers.
A092486 preceded by a zero. - Philippe Deléham, May 05 2009
Fixed points are the even numbers. - Wesley Ivan Hurt, Oct 16 2015

Crossrefs

Programs

  • Magma
    [n-(1-(-1)^n)*(-1)^((2*n+1-(-1)^n) div 4) : n in [0..100]]; // Wesley Ivan Hurt, Oct 16 2015
    
  • Maple
    A159966:=n->n-(1-(-1)^n)*(-1)^((2*n+1-(-1)^n)/4): seq(A159966(n), n=0..100); # Wesley Ivan Hurt, Oct 16 2015
  • Mathematica
    Table[n - (1 - (-1)^n) (-1)^((2 n + 1 - (-1)^n)/4), {n, 0, 40}] (* or *) CoefficientList[Series[(3 x - 4 x^2 + 3 x^3)/((x - 1)^2 (1 + x^2)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Oct 16 2015 *)
    LinearRecurrence[{2,-2,2,-1},{0,3,2,1},80] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    concat(0, Vec((3*x-4*x^2+3*x^3)/((x-1)^2*(1+x^2)) + O(x^100))) \\ Altug Alkan, Oct 17 2015

Formula

a(n) = lod_4 (A102370(n)).
From Wesley Ivan Hurt, Oct 16 2015: (Start)
G.f.: (3*x-4*x^2+3*x^3)/((x-1)^2*(1+x^2)).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4), n>3.
a(n) = n-(1-(-1)^n)*(-1)^((2*n+1-(-1)^n)/4).
a(2n) = A005843(n); a(2n+1) = A166549(n).
a(n+1) - a(n) = A132429(n)*(-1)^n. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, Nov 28 2023

A351122 Irregular triangle read by rows in which row n lists the number of divisions by 2 after tripling steps in the Collatz 3x+1 trajectory of 2n+1 until it reaches 1.

Original entry on oeis.org

1, 4, 4, 1, 1, 2, 3, 4, 2, 1, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 1, 1, 1, 5, 4, 2, 3, 4, 1, 3, 1, 2, 3, 4, 6, 1, 1, 5, 4, 2, 1, 3, 1, 2, 3, 4, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 2, 2, 4, 3, 1, 1, 5, 4, 3, 1, 2, 3, 4
Offset: 1

Views

Author

Flávio V. Fernandes, Feb 01 2022

Keywords

Examples

			Triangle starts at T(1,0):
   n\k   0   1   2   3   4   5   6   7   8 ...
   1:    1   4
   2:    4
   3:    1   1   2   3   4
   4:    2   1   1   2   3   4
   5:    1   2   3   4
   6:    3   4
   7:    1   1   1   5   4
   8:    2   3   4
   9:    1   3   1   2   3   4
  10:    6
  11:    1   1   5   4
  12:    2   1   3   1   2   3   4
  13:    1   2   1   1   1   1   2   2   1   2   1   1   2  ... (see A372362)
  ...
For n=6, the trajectory of 2*n+1 = 13 is as follows. The tripling steps ("=>") are followed by runs of 3 and then 4 halvings ("->"), so row n=6 is 3, 4.
  13  =>  40 -> 20 -> 10 -> 5  =>  16 -> 8 -> 4 -> 2 -> 1
    triple   \------------/   triple  \---------------/
               3 halvings                4 halvings
Runs of halvings are divisions by 2^T(n,k). Row n=11 is 1, 1, 5, 4 and its steps starting from 2*n+1 = 23 reach 1 by a nested expression
  (((((((23*3+1)/2^1)*3+1)/2^1)*3+1)/2^5)*3+1)/2^4 = 1.
		

Crossrefs

Cf. A075680 (row lengths), A166549 (row sums), A351123 (row partial sums).
Cf. A256598.
Cf. A020988 (where row is [2*n]).
Cf. A198584 (where row length is 2), A228871 (where row is [1, x]).
Cf. A372362 (row 13, the first 41 terms).

Programs

  • PARI
    row(n) = my(m=2*n+1, list=List()); while (m != 1, if (m%2, m = 3*m+1, my(nb = valuation(m,2)); m/=2^nb; listput(list, nb));); Vec(list); \\ Michel Marcus, Jul 18 2022

Formula

T(n,k) = log_2( (3*A256598(n,k)+1) / A256598(n,k+1) ).

Extensions

Corrected by Michel Marcus, Jul 18 2022

A351123 Irregular triangle read by rows: row n lists the partial sums of the number of divisions by 2 after each tripling step in the Collatz trajectory of 2n+1.

Original entry on oeis.org

1, 5, 4, 1, 2, 4, 7, 11, 2, 3, 4, 6, 9, 13, 1, 3, 6, 10, 3, 7, 1, 2, 3, 8, 12, 2, 5, 9, 1, 4, 5, 7, 10, 14, 6, 1, 2, 7, 11, 2, 3, 6, 7, 9, 12, 16, 1, 3, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 23, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 48, 50, 52, 56, 59, 60, 61, 66, 70
Offset: 1

Views

Author

Flávio V. Fernandes, Feb 01 2022

Keywords

Comments

The terms in row n are T(n,0), T(n,1), ..., T(n, A258145(n)-2), and are the partial sums of the terms in row n of A351122.
In each row n, the terms also satisfy the equation 3* (3* (3* (3* ... (3* (2n+1) +1) + 2^T(n,0)) + 2^T(n,1)) + 2^T(n,2)) + ... = 2^T(n, A258145(n)-2); e.g., for n=4, and A258145(4)-2=5: 3* (3* (3* (3* (3* (3*9+1) +2^2) +2^3) +2^4) +2^6) +2^9 = 2^13.
For row n, the right-hand side of the equation above is 2^A166549(n+1). E.g., for the above example (n=4), the right-hand side is 2^A166549(4+1) = 2^13.

Examples

			Triangle starts at T(1,0):
n\k   0   1   2   3   4   5   6   7   8   9   10 ...
1:    1   5
2:    4
3:    1   2   4   7  11
4:    2   3   4   6   9  13
5:    1   3   6  10
6:    3   7
7:    1   2   3   8   12
8:    2   5   9
...
E.g., row 3 of A351122 is [1, 1, 2, 3, 4]; its partial sums are [1, 2, 4, 7, 11].
		

Crossrefs

Programs

  • PARI
    orow(n) = my(m=2*n+1, list=List()); while (m != 1, if (m%2, m = 3*m+1, my(nb = valuation(m,2)); m/=2^nb; listput(list, nb));); Vec(list); \\ A351122
    row(n) = my(v = orow(n)); vector(#v, k, sum(i=1, k, v[i])); \\ Michel Marcus, Jul 18 2022

Extensions

Data corrected by Mohsen Maesumi, Jul 18 2022
Last row completed by Michel Marcus, Jul 18 2022
Showing 1-3 of 3 results.