A159966 Lodumo_4 of A102370 (sloping binary numbers).
0, 3, 2, 1, 4, 7, 6, 5, 8, 11, 10, 9, 12, 15, 14, 13, 16, 19, 18, 17, 20, 23, 22, 21, 24, 27, 26, 25, 28, 31, 30, 29, 32, 35, 34, 33, 36, 39, 38, 37, 40, 43, 42, 41, 44, 47, 46, 45, 48, 51, 50, 49, 52, 55, 54, 53, 56, 59, 58, 57, 60, 63, 62, 61, 64, 67, 66, 65, 68, 71, 70, 69, 72
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- OEIS wiki, Lodumo transform.
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
- Index entries for sequences that are permutations of the natural numbers.
Programs
-
Magma
[n-(1-(-1)^n)*(-1)^((2*n+1-(-1)^n) div 4) : n in [0..100]]; // Wesley Ivan Hurt, Oct 16 2015
-
Maple
A159966:=n->n-(1-(-1)^n)*(-1)^((2*n+1-(-1)^n)/4): seq(A159966(n), n=0..100); # Wesley Ivan Hurt, Oct 16 2015
-
Mathematica
Table[n - (1 - (-1)^n) (-1)^((2 n + 1 - (-1)^n)/4), {n, 0, 40}] (* or *) CoefficientList[Series[(3 x - 4 x^2 + 3 x^3)/((x - 1)^2 (1 + x^2)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Oct 16 2015 *) LinearRecurrence[{2,-2,2,-1},{0,3,2,1},80] (* Harvey P. Dale, Jul 02 2022 *)
-
PARI
concat(0, Vec((3*x-4*x^2+3*x^3)/((x-1)^2*(1+x^2)) + O(x^100))) \\ Altug Alkan, Oct 17 2015
Formula
a(n) = lod_4 (A102370(n)).
From Wesley Ivan Hurt, Oct 16 2015: (Start)
G.f.: (3*x-4*x^2+3*x^3)/((x-1)^2*(1+x^2)).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4), n>3.
a(n) = n-(1-(-1)^n)*(-1)^((2*n+1-(-1)^n)/4).
a(n+1) - a(n) = A132429(n)*(-1)^n. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, Nov 28 2023
Comments